Michael Buhlmann

Mathematik-Formelsammlung

- > Geometrie
- > Pyramiden
- > Quadratische Pyramiden

Eine (gerade) <u>Pyramide</u> mit einem Quadrat als Grundfläche ist durch die <u>Grundkantenlänge</u> a, die <u>Pyramidenhöhe</u> h bestimmt, weiter durch die Seitenhöhe h_s, die Kantenlänge s, die Oberfläche O, die Mantelfläche M, die Grundfläche G und das Volumen V. Die <u>Grundfläche</u> G ist ein Quadrat mit Grundseite a und Diagonale d.

Quadratische Pyramide				
	s h _s d	ra		
Eckenanzahl (Grundfläche)	n = 4			
Grundflächendreieck	$G = a^2$	$a = \sqrt{G}$		
Pyramidenumfang	u = 4a	$a = \frac{u}{4}$		
Grundflächen- diagonale	$d = a\sqrt{2}$	$a = \frac{d}{\sqrt{2}}$		
Seitenhöhe	$h_s^2 = h^2 + \left(\frac{a}{2}\right)^2$	$h^2 = h_s^2 - \left(\frac{a}{2}\right)^2$	$\left(\frac{a}{2}\right)^2 = h_s^2 - h^2$	

Seitenkante	$s^2 = h_s^2 + \left(\frac{a}{2}\right)^2$	$h_s^2 = s^2 - \left(\frac{a}{2}\right)^2$	$\left(\frac{a}{2}\right)^2 = s^2 - h_s^2$	
Pyramidenhöhe	$s^2 = h^2 + \left(\frac{d}{2}\right)^2$	$h^2 = s^2 - \left(\frac{d}{2}\right)^2$	$d^2 = 4\left(s^2 - h^2\right)$	
Mantelfläche	$M=2ah_s$	$h_s = \frac{M}{2a}$	$a = \frac{M}{2h_s}$	
Oberfläche	$O = G + M =$ $a^2 + 2ah_s = a(a + 2h_s)$	G = O - M	M = O - G	
Volumen	$V = \frac{1}{3}G \cdot h = \frac{1}{3}a^2h$	$G = \frac{3V}{h}$	$h = \frac{3V}{G}$	
		$a = \sqrt{\frac{3V}{h}}$	$h = \frac{3V}{a^2}$	
Winkel zwischen Kante s und Grundkante a	$\sin\alpha = \frac{h_s}{s}$	$\cos\alpha = \frac{a}{2s}$	$\tan \alpha = \frac{2h_s}{a}$	
Winkel zwischen Seitenhöhe $h_{\rm s}$ und Grundfläche G	$\sin \beta = \frac{h}{h_s}$	$\cos \beta = \frac{a}{2h_s}$	$\tan \beta = \frac{2h}{a}$	
Winkel zwischen Kante s und Grundfläche G	$\sin \gamma = \frac{h}{s}$	$\cos \gamma = \frac{d}{2s}$	$\tan \gamma = \frac{2h}{d}$	
Quadratische Pyramide				

Eine (gerade) <u>Pyramide</u> mit einem Quadrat als Grundfläche ist durch die <u>Grundkantenlänge</u> a, die <u>Pyramidenhöhe</u> h, den Innenwinkel ϕ bestimmt, weiter durch die Seitenhöhe h_s, die Kantenlänge s, die Oberfläche O, die Mantelfläche M, die Grundfläche G und das Volumen V. Die <u>Grundfläche</u> G besteht aus 4 rechtwinkligen und gleichschenkligen (Grundflächen-) Dreiecken mit <u>Innenwinkel</u> $\phi = 360^{\circ}/4 = 90^{\circ}$, Grundseite a, Grundflächenradius r und Dreieckshöhe h_a.

Quadratische Pyramide					
h _s r a					
Eckenanzahl (Grundfläche) Grundflächendreieck	n = 4	r h _a a			
Innenwinkel	φ = 60°	$\frac{\varphi}{2} = 30^{\circ}$			
Grundflächen- diagonale	$d = a\sqrt{2}$	$a = \frac{d}{\sqrt{2}}$	$r = \frac{d}{2}$		
Grundflächendreieck	$r = \frac{a}{2}\sqrt{2} = \frac{a}{\sqrt{2}}$	$h_a = \frac{a}{2}$	$h_a = \frac{r}{\sqrt{2}}$		
	$r^2 = h_a^2 + \left(\frac{a}{2}\right)^2$	$h_a^2 = r^2 - \left(\frac{a}{2}\right)^2$	$\left(\frac{a}{2}\right)^2 = r^2 - h_a^2$		
Pyramidenumfang	u = 4a	$a = \frac{u}{4}$			
Grundfläche	$G = a^2$		$a = \sqrt{G}$		
Seitenhöhe	$h_s^2 = h^2 + h_a^2$	$h^2 = h_s^2 - h_a^2$	$h_a^2 = h_s^2 - h^2$		

Seitenkante	$s^2 = h_s^2 + \left(\frac{a}{2}\right)^2$	$h_s^2 = s^2 - \left(\frac{a}{2}\right)^2$	$\left(\frac{a}{2}\right)^2 = s^2 - h_s^2$	
Pyramidenhöhe	$s^2 = h^2 + r^2$	$h^2 = s^2 - r^2$	$r^2 = s^2 - h^2$	
Mantelfläche	$M = 2ah_s$	$h_s = \frac{M}{2a}$	$a = \frac{M}{2h_s}$	
Oberfläche	$O = G + M =$ $a^2 + 2ah_s = a(a + 2h_s)$	G = O - M	M = O - G	
Volumen	$V = \frac{G \cdot h}{3} = \frac{1}{3}a^2h$	$G = \frac{3V}{h}$	$h = \frac{3V}{G}$	
		$a = \sqrt{\frac{3V}{h}}$	$h = \frac{3V}{a^2}$	
Winkel zwischen Kante s und Grundkante a	$\sin \alpha = \frac{h_s}{s}$	$\cos\alpha = \frac{a}{2s}$	$\tan \alpha = \frac{2h_s}{a}$	
Winkel zwischen Seitenhöhe h _s und Grundfläche G	$\sin \beta = \frac{h}{h_s}$	$\cos \beta = \frac{h_a}{h_s}$	$\tan \beta = \frac{h}{h_a}$	
Winkel zwischen Kante s und Grundfläche G	$\sin \gamma = \frac{h}{s}$	$\cos \gamma = \frac{r}{s}$	$\tan \gamma = \frac{h}{r}$	
Quadratische Pyramide				

www.michael-buhlmann.de / 07.2017