Michael Buhlmann

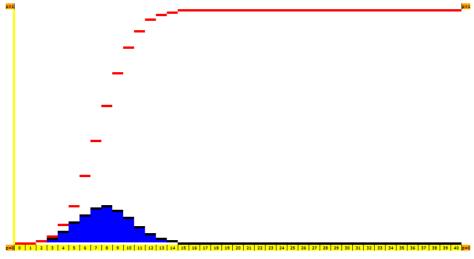
Mathematik-Formelsammlung

- > Statistik
- > Signifikanztests (Binomialverteilung)
- > Einseitiger Signifikanztest

Ein <u>Bernoulli-Experiment</u> ist ein Zufallsexperiment mit zwei Ausgängen (T = Treffer, N = Nichttreffer), der Grundwahrscheinlichkeit p als Trefferwahrscheinlichkeit, der Anzahl n der Experimentwiederholung "mit Zurücklegen". Die Zufallsvariable X gibt die Anzahl der Treffer (T) bei n-maliger Wiederholung des Experiments an. Es gelten auf Grund der Pfadregeln für Wahrscheinlichkeitsbäume (Multiplikation der Wahrscheinlichkeiten entlang eines Pfades, Addition der (multiplizierten) Wahrscheinlichkeiten verschiedener Pfade) die Trefferwahrscheinlichkeiten der Bernoulli-Formel:

$$p(X = k) = \binom{n}{k} p^{k} (1 - p)^{n - k}$$
$$p(X \le k) = p(X = 0) + p(X = 1) + \dots + p(X = k)$$

 $\text{mit den Binomialkoeffizienten } \binom{n}{k} = \frac{n(n-1)(n-2) \cdot \ldots \cdot (n-k+1)}{1 \cdot 2 \cdot \ldots \cdot k} = \frac{n!}{k!(n-k)!} \text{ (als Anzahl der Pfade mit }$


gleicher Wahrscheinlichkeit $p^k(1-p)^{n-k}$). Es gilt weiter hinsichtlich des <u>Erwartungswerts</u> E(X) und der Standardabweichung $\sigma(X)$ beim Bernoulli-Experiment:

$$E(X) = \mu = np, \ \sigma(X) = \sqrt{np(1-p)}$$
.

Aus dem Bernoulli-Experiment ergibt sich die <u>Binomialverteilung</u> B(n,p) für die Zufallsvariable X der Trefferanzahl mit:

$$B(n, p, k) = \binom{n}{k} p^{k} (1-p)^{n-k}$$

und:

$$p(X=k) = B(n,p,k), p(X \le k)$$

Mit Hilfe der Binomialverteilung können sog. <u>Signifikanztests</u> durchgeführt werden, z.B. um bei unbekannter Grundwahrscheinlichkeit p eines Bernoulli-Experiments diese Wahrscheinlichkeit anhand von Stichproben zu testen. Für einseitige Signifikanztests ergibt sich damit:

Einseitige Signifikanztests (Binomialverteilung)

Einseitiger Signifikanztest (linksseitig):

 H_0 : $p=p_0$ (Nullhypothese)

gegen H₁: p<p₀ (Gegenhypothese)

bei Stichprobenumfang n und Signifikanzniveau (maximale Irrtumswahrscheinlichkeit) α -> Annahmebereich [a; n] der Nullhypothese bei kleinstem a mit

-> Durchführung der Stichprobe und Bestimmung der Trefferanzahl -> Annahme bzw. Ablehnung der Nullhypothese, wenn Trefferanzahl im Annahmebereich bzw. sonst -> Irrtumswahrscheinlichkeit $p(X < a) \le \alpha$.

Einseitiger Signifikanztest (rechtsseitig):

H₀: p=p₀ (Nullhypothese)

gegen H₁: p>p₀ (Gegenhypothese)

bei Stichprobenumfang n und Signifikanzniveau (maximale Irrtumswahrscheinlichkeit) α -> Annahmebereich [0; b] der Nullhypothese bei kleinstem b mit

$$p(X \le b) > 1-\alpha$$

-> Durchführung der Stichprobe und Bestimmung der Trefferanzahl -> Annahme bzw. Ablehnung der Nullhypothese, wenn Trefferanzahl im Annahmebereich bzw. sonst -> Irrtumswahrscheinlichkeit $p(X>b) \le \alpha$.

Beispiele:

Beispiel: Wahrscheinlichkeitstafel: Einseitiger Signifikanztest (linksseitig) mit B(20,0.45)-verteilter Zufallsvariable: Nullhypothese H_0 : p=0.45; Gegenhypothese H_1 : p<0.45; Signifikanzniveau $\alpha=0.05=5\%$

n = 20	B(20,0.45)	p = 0.45
k =	p(X=k) =	p(x≤k) =
0	0.000006	0.000006
1	0.000105	0.000111
2	0.000816	0.000927
3	0.004006	0.004933
4	0.01393	0.018863
5	0.036471	0.055334
6	0.0746	0.129934
7	0.122072	0.252006
8	0.1623	0.414306
9	0.177055	0.591361
10	0.159349	0.750711
11	0.118524	0.869235
12	0.072731	0.941966
13	0.03662	0.978586
14	0.014981	0.993566
15	0.004903	0.998469
16	0.001254	0.999723
17	0.000241	0.999964
18	0.000033	0.999997
19	0.000003	1
20	0	1

Annahmebereich [5; 20] der Nullhypothese H₀: p = 0.45 zum Signifikanzniveau $\alpha = 0.05 = 5\%$ bei 20-maliger Versuchswiederholung des Bernoulli-Experiments und Erwartungswert $\mu = 9$; Ablehnungsbereich [0; 4] mit Irrtumswahrscheinlichkeit 0.018863 = 1.8863%.

Beispiel: Wahrscheinlichkeitstafel: Einseitiger Signifikanztest (rechtsseitig) mit B(15,0.3)-verteilter Zufallsvariable: Nullhypothese H_0 : p=0.3; Gegenhypothese H_1 : p>0.3; Signifikanzniveau $\alpha=0.10=10\%$

n = 15	B(15,0.3)	p = 0.3
k =	p(X=k) =	p(x≤k) =
0	0.004748	0.004748
1	0.03052	0.035268
2	0.09156	0.126828
3	0.17004	0.296868
4	0.218623	0.515491
5	0.20613	0.721621
6	0.147236	0.868857
7	0.08113	0.949987
8	0.03477	0.984757
9	0.01159	0.996347
10	0.00298	0.999328
11	0.000581	0.999908
12	0.000083	0.999991
13	0.000008	0.999999
14	0.000001	1
15	0	1

Annahmebereich [0; 7] der Nullhypothese H_0 : p=0.3 zum Signifikanzniveau $\alpha=0.10=10\%$ bei 15-maliger Versuchswiederholung des Bernoulli-Experiments und Erwartungswert $\mu=4.5$; Ablehnungsbereich [8; 15] mit Irrtumswahrscheinlichkeit 0.015243=1.5243%.