Geraden sind lineare Funktionen vom Typ y = mx + c mit m als Steigung und c als y-Achsenabschnitt. Der y-Achsenabschnittspunkt ist der Schnittpunkt mit der y-Achse: S_v(0|c) (x=0), der Schnittpunkt mit x-Achse ist, falls existent, die Nullstelle N(-c/m|0) (y=0, m≠0). Es ergibt sich als Ableitung: y' = m.

Geraden werden bestimmt durch zwei Punkte, die auf der Geraden liegen, oder durch einen auf der Gerade liegenden Punkt und die Geradensteigung. Es gilt also mit den Punkten $P(x_1|y_1)$ und $Q(x_2|y_2)$ die Zweipunkteform der Geradengleichung:

$$\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1} \text{ oder } y = \frac{y_2-y_1}{x_2-x_1}(x-x_1) + y_1 = \frac{y_2-y_1}{x_2-x_1}x - \frac{y_2-y_1}{x_2-x_1}x_1 + y_1$$
mit Geradensteigung als Steigung zwischen den Punkten: $m = \frac{y_2-y_1}{x_2-x_1}$.

Mit dem Punkt P(x₁|y₁) und der Geradensteigung m ergibt sich die Punktsteigungsform der Geradengleichung:

$$\frac{y - y_1}{x - x_1} = m \text{ oder } y = m(x - x_1) + y_1 = mx - mx_1 + y_1$$

Zu einer Geraden g: y = mx + c gehört der Steigungswinkel φ mit:

$$\tan \varphi = m \Leftrightarrow \varphi = \tan^{-1}(m)$$

Zwei Geraden können sich schneiden, parallel oder identisch sein. Es gilt hinsichtlich der Lage der Geraden zueinander:

$$\begin{split} m_1 &= m_2 \Leftrightarrow g \parallel h \text{ (g und h sind parallel)} \\ m_1 &\neq m_2 \Leftrightarrow g \cap h \neq \{\} \text{ (g und h schneiden sich)} \\ m_1 \cdot m_2 &= -1 \Leftrightarrow m_1 = -\frac{1}{m_2} \Leftrightarrow m_2 = -\frac{1}{m_1} \Leftrightarrow g \perp h \\ \text{ (g und h sind zueinander senkrecht)} \end{split}$$

Schneiden sich die Geraden g: $y = m_1x + c_1$ und h: $y = m_2x + c_2$, so gibt es einen Schnittpunkt und einen Schnittwinkel. Der Schnittpunkt S ist durch Gleichsetzen der Geraden zu ermitteln (lineares Gleichungssystem):

und mit S(x_S|y_S) als Schnittpunkt. Der Schnittwinkel zwischen den Geraden errechnet sich als:

$$\tan \varphi = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right| \iff \varphi = \tan^{-1} \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right|$$

Der Abstand zwischen zwei parallelen Geraden g: y = mx + c₁ und h: y = mx + c₂ ermittelt sich mit Hilfe des Steigungswinkels $\varphi = \tan^{-1}(m)$ zu:

$$d = \left| c_2 - c_1 \right| \cos \varphi$$

Eine zu einer Geraden g: $y = mx + c_1$ parallele Gerade h: $y = mx + c_2$ durch einen Punkt $P(x_1|y_1)$ lautet:

$$y = m(x - x_1) + y_1 = mx - mx_1 + y_1$$

Die zu g: $y = m_1x + c_1$ senkrechte Gerade h: $y = m_2x + c_2$ durch einen Punkt $P(x_1|y_1)$ ergibt sich vermöge $m_2 = -1/m_1$ zu:

$$y = m_2(x - x_1) + y_1 = -\frac{1}{m_1}x + \frac{x_1}{m_1} + y_1.$$

<u>Tangenten</u> sind Geraden t: $y = f'(x_0)(x - x_0) + f(x_0)$ bzw. t: y = f'(u)(x - u) + f(u) an eine Funktion f(x) in einem Punkt $B(x_0|f(x_0)) = B(u|f(u))$, dem sog. Berührpunkt.

Normalen sind Geraden n: $y = -\frac{1}{f'(x_0)}(x - x_0) + f(x_0)$ bzw. n: $y = -\frac{1}{f'(u)}(x - u) + f(u)$ senkrecht zu einer Funktion f(x) in einem Punkt $B(x_0|f(x_0)) = B(u|f(u))$.