Michael Buhlmann

Mathematikaufgaben

> Analysis

> Ableitung/Nicht-Differenzierbarkeit

Aufgabe: Zeige, dass die Funktion f(x) an der Stelle $x_0 = 6$ nicht differenzierbar ist mit:

$$f(x) = \sqrt{2x - 12} .$$

Lösung: I. Allgemein gilt: Für eine Funktion f: $D_f o R$ und ein $x_0 \varepsilon D_f$ heißt $f'(x_0)$ im Falle der Differenzierbarkeit von f in x_0 die Ableitung der Funktion f im Punkt x_0 . Die Ableitung $f'(x_0)$ ist die Steigung von f in x_0 , die Ableitungen in allen Punkten $x \varepsilon D_f$ bilden die Ableitungsfunktion f': $D_f o R$ mit der Funktionsvorschrift f'(x). Die Ableitung $f'(x_0)$ zu einer Funktion f in einem Punkt x_0 bestimmt sich als Grenzwert des (links-, rechtsseitigen) Differenzenquotienten

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\substack{x \to x_0 \\ x < x_0}} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\substack{x \to x_0 \\ x > x_0}} \frac{f(x) - f(x_0)}{x - x_0}.$$

Existenz der Ableitung in x_0 bedeutet also Existenz des Grenzwertes, des Differenzialquotienten. Dessen Nichtexistenz führt folglich auf die Nicht-Differenzierbarkeit der Funktion f(x) an der Stelle x_0 .

II. $x_0 = 6$ ist eine Randstelle des Definitionsbereichs $D_f = [6, \infty)$. Schon von daher ist Differenzierbarkeit im herkömmlichen Sinn hier nicht gewährleistet. Wir betrachten aber noch den nur möglichen rechtsseitigen Grenzwert des Differenzenquotienten für x>6 bei $x_0 = 6$:

$$\frac{f(x) - f(6)}{x - 6} = \frac{\sqrt{2x - 12} - \sqrt{2 \cdot 6 - 12}}{x - 6} = \frac{\sqrt{2x - 12} - \sqrt{0}}{x - 6} = \frac{\sqrt{2x - 12} - 0}{x - 6} = \frac{\sqrt{2(x - 6)}}{x - 6} = \frac{\sqrt{2} \cdot \sqrt{x - 6}}{x - 6} = \frac{\sqrt{2}}{\sqrt{x - 6}} = \frac{\sqrt{2}}{\sqrt{x$$

Der rechtsseitige Grenzwert existiert nicht, die Funktion ist bei $x_0 = 6$ nicht differenzierbar.

www.michael-buhlmann.de / 11.2020 / Aufgabe 1182