Michael Buhlmann

Mathematikaufgaben

- > Analysis
- > Ableitung

Aufgabe: Bestimme f"(0) der Funktion:

$$f(x) = \frac{\cos x}{1 + x^2} \,.$$

1. Lösung: I. Es gelten die allgemeinen Ableitungsregeln:

$$(u(x) + c)' = u'(x) \text{ (additive Konstante)}$$

$$[c \cdot u(x)]' = c \cdot u'(x) \text{ (konstanter Faktor)}$$

$$(u(x) + v(x))' = u'(x) + v'(x) \text{ (Summenregel)}$$

$$(u(x)v(x))' = u'(x)v(x) + u(x)v'(x) \text{ (Produktregel)}$$

$$(u(x)/v(x))' = (u'(x)v(x) - u(x)v'(x))/(v(x))^2 \text{ (Quotientenregel)}$$

$$(u(v(x))' = u'(v(x)) \cdot v'(x) \text{ (Kettenregel)}$$

sowie die auf Funktionstypen bezogenen Regeln:

```
(x^n)' = nx^{n-1} (Potenzregel für natürliche/ganzzahlige/reelle n) (\sin(x))' = \cos(x), (\cos(x))' = \sin(x) (trigonometrische Funktionen) (e^x)' = e^x (natürliche Exponentialfunktion) (\ln(x))' = 1/x (natürliche Logarithmusfunktion).
```

II. Wir bilden hauptsächlich mit der Quotientenregel die Ableitungen f'(x), f"(x) wie folgt:

$$f'(x) = \frac{\cos x}{1+x^2}$$

$$f''(x) = \frac{-\sin x \cdot (1+x^2) - \cos x \cdot 2x}{(1+x^2)^2} = \frac{-(1+x^2)\sin x - 2x\cos x}{(1+x^2)^2}$$

$$f'''(x) = \frac{\left(-2x\sin x - (1+x^2)\cos x - 2\cos x + 2x\sin x\right)(1+x^2)^2 - \left(-(1+x^2)\sin x - 2x\cos x\right) \cdot 2(1+x^2) \cdot 2x}{(1+x^2)^4} = \frac{\left(-2x\sin x - (1+x^2)\cos x - 2\cos x + 2x\sin x\right)(1+x^2) - \left(-(1+x^2)\sin x - 2x\cos x\right) \cdot 2 \cdot 2x}{(1+x^2)^3} = \frac{\left(-(1+x^2)\cos x - 2\cos x\right)(1+x^2) + \left((1+x^2)\sin x + 2x\cos x\right) \cdot 4x}{(1+x^2)^3} = \frac{\left(-(1+x^2)\cos x - 2\cos x\right)(1+x^2) + \left((1+x^2)\sin x + 2x\cos x\right) \cdot 4x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\sin x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\cos x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) + 8x^2\right)\cos x + 4x(1+x^2)\cos x}{(1+x^2)^3} = \frac{\left(-(1+x^2)^2 - 2(1+x^2) +$$

III. Einsetzen von x = 0 in die 2. Ableitung f"(x) ergibt als gesuchten Ableitungswert:

$$f''(0) = \frac{\left(-3 + 4 \cdot 0^2 + 0^4\right)\cos 0 + \left(4 \cdot 0 + 4 \cdot 0^3\right)\sin 0}{\left(1 + 0^2\right)^3} = \frac{-3 \cdot 1 + 0}{1} = -3.$$

2. Lösung: I. Voraussetzen können wir die Reihenentwicklung der geometrischen Reihe (Potenzreihe, Taylorreihe mit Entwicklungsmittelpunkt $z_0 = 0$) mit reellen z:

$$\frac{1}{1-z} = \sum_{i=0}^{\infty} z^{i} , -1 < z < 1 (*)$$

sowie die Taylorentwicklung der Kosinusfunktion (Taylorreihe mit Entwicklungsmittelpunkt $z_0 = 0$) mit reellen z:

$$\cos z = \sum_{i=0}^{\infty} \frac{(-1)^i}{(2i)!} z^{2i}$$
, z reell (**)

II. Mit z = -x² ergibt sich aus (*): $\frac{1}{1+x^2} = \sum_{i=0}^{\infty} (-x^2)^i = \sum_{i=0}^{\infty} (-1)^i x^{2i}$; weiter ist nach (**): $\cos x = \sum_{i=0}^{\infty} \frac{(-1)^i}{(2i)!} x^{2i}$. Es gilt folglich und unter Verwendung des

Cauchyprodukts für absolut konvergente Potenzreihen:

$$f(x) = \frac{\cos x}{1+x^{2}} = \cos x \cdot \frac{1}{1+x^{2}} = \left(\sum_{i=0}^{\infty} \frac{(-1)^{i}}{(2i)!} x^{2i}\right) \left(\sum_{j=0}^{\infty} (-1)^{j} x^{2j}\right) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(-1)^{k}}{(2k)!} x^{2k} \cdot (-1)^{n-k} x^{2(n-k)} = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(-1)^{k+n-k}}{(2k)!} x^{2k+2(n-k)} = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(-1)^{n}}{(2k)!} x^{2n} = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{k=0}^{n} \frac{(-1)^{n}}{(2k)!} x^{2n} = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{k=0}^{\infty$$

Die Funktion f(x) lässt sich also als Potenzreihe darstellen mit:

$$f(x) = \frac{\cos x}{1+x^2} = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \frac{1}{(2k)!} \right) (-1)^n x^{2n} .$$

III. Wir leiten die absolut konvergente Potenzreihe gliedweise zweimal ab und erhalten für die Ableitungen f'(x) und f"(x):

$$f(x) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \frac{1}{(2k)!} \right) (-1)^{n} x^{2n}$$

$$f'(x) = \sum_{n=1}^{\infty} \left(\sum_{k=0}^{n} \frac{1}{(2k)!} \right) (-1)^{n} \cdot 2nx^{2n-1}$$

$$f''(x) = \sum_{n=1}^{\infty} \left(\sum_{k=0}^{n} \frac{1}{(2k)!} \right) (-1)^{n} \cdot 2n(2n-1)x^{2n-2} .$$

IV. Einsetzen von x = 0 in die 2. Ableitung f"(x) ergibt als gesuchten Ableitungswert:

$$f''(0) = \sum_{n=1}^{\infty} \left(\sum_{k=0}^{n} \frac{1}{(2k)!} \right) (-1)^n \cdot 2n(2n-1) \cdot 0^{2n-2} = \left(\sum_{k=0}^{1} \frac{1}{(2k)!} \right) (-1)^2 \cdot 2 \cdot (2 \cdot 1 - 1) \cdot 1 = (1 + \frac{1}{2})(-1) \cdot 2 \cdot 1 = -3.$$

V. Funktion $f(x) = \frac{\cos x}{1+x^2}$:

X	f(x)	f'(x)	f"(x)	Besondere Kurvenpunkte
-5	0.0109	-0.03	-0.04	
-4.72	0.0003	-0.04	-0.04	Nullstelle N(-4.72 0)
-4.5	-0.0099	-0.05	-0.03	
-4	-0.0384	-0.06	-0.02	
-3.7	-0.0577	-0.07	0	Wendepunkt W(-3.7 -0.06)
-3.5	-0.0707	-0.06	0.01	
-3	-0.099	-0.05	0.06	
-2.55	-0.1106	0	0.14	Tiefpunkt T(-2.55 -0.11)
-2.5	-0.1105	0.01	0.15	
-2	-0.0832	0.12	0.3	
-1.58	-0.0026	0.28	0.52	Nullstelle N(-1.58 0)
-1.5	0.0218	0.33	0.57	
-1	0.2702	0.69	0.84	
-0.56	0.645	0.95	0	Wendepunkt W(-0.56 0.64)
-0.5	0.7021	0.95	-0.31	
0	1	0	-3	Schnittpunkt $S_y(0 1) = Hochpunkt H(0 1)$
0.5	0.7021	-0.95	-0.31	
0.55	0.6545	-0.95	-0.05	Wendepunkt W(0.55 0.65)
1	0.2702	-0.69	0.84	
1.5	0.0218	-0.33	0.57	
1.57	0.0002	-0.29	0.52	Nullstelle N(1.57 0)
2	-0.0832	-0.12	0.3	
2.5	-0.1105	-0.01	0.15	
2.54	-0.1106	0	0.14	Tiefpunkt T(2.54 -0.11)
3	-0.099	0.05	0.06	
3.5	-0.0707	0.06	0.01	
3.69	-0.0584	0.07	0	Wendepunkt W(3.69 -0.06)
4	-0.0384	0.06	-0.02	
4.5	-0.0099	0.05	-0.03	
4.71	-0.0001	0.04	-0.03	Nullstelle N(4.71 0)
5	0.0109	0.03	-0.04	

