Michael Buhlmann

Mathematikaufgaben

> Analysis

> Beweis

Aufgabe: Leite für eine differenzierbare Funktion f(x) und eine definierte Stelle x_0 aus der Geradengleichung y = mx + c die Tangentenformel:

t:
$$y = f'(x_0)(x-x_0) + f(x_0)$$

her.

Lösung: Für eine Stelle x_0 liegt der Punkt $P(x_0|f(x_0))$ auf dem Graphen der vorgegebenen differenzierbaren Funktion f(x). Die Tangente ist die Gerade durch den Punkt P an die Funktion f(x), wo die Funktionswerte von Funktion f(x) und Gerade sowie der Wert der Ableitung $f'(x_0)$ der Funktion f(x) und die Geradensteigung übereinstimmen. Der Punkt P ist damit Berührpunkt zwischen Funktion und Tangente.

Zur Funktion f(x) betrachten wir deren 1. Ableitung f'(x) und bilden den Funktionswert $f(x_0)$ und den Wert der Ableitung $f'(x_0)$ an der Stelle x_0 . Es werde zudem die Tangente durch den Punkt $P(x_0|f(x_0))$ an die Funktion f(x) beschreiben durch die Geradengleichung: f(x) beschreiben durch durc

 $f'(x_0) = m$ (Übereinstimmung von Ableitung und Tangentensteigung),

so dass die Geradengleichung zu

t:
$$y = f'(x_0)x + c$$

wird. Zur Bestimmung von c setzen wir den Berührpunkt $P(x_0|f(x_0))$ mit $x=x_0$, $y=f(x_0)$ in die Geradengleichung ein (Punktprobe):

 $f(x_0) = f'(x_0)x_0 + c$ (Übereinstimmung der Funktionswerte).

Umstellen der Gleichung nach c ergibt:

$$f(x_0) = f'(x_0)x_0 + C$$
 $|-f'(x_0)x_0|$

$$f(x_0) - f'(x_0)x_0 = c$$
.

Der Term für c ist in die Tangentengleichung t: $y = f'(x_0)x + c$ statt c einzusetzen:

t:
$$y = f'(x_0)x + f(x_0) - f'(x_0)x_0$$
.

Umstellen ergibt die nachzuweisende Tangentenformel:

t:
$$y = f'(x_0)x + f(x_0) - f'(x_0)x_0 = f'(x_0)x - f'(x_0)x_0 + f(x_0) = f'(x_0)(x-x_0) + f(x_0)$$
.

www.michael-buhlmann.de / 10.2023 / Aufgabe 1901