Michael Buhlmann

Mathematikaufgaben

> Analysis

> Bestimmungsaufgabe

Aufgabe: Bestimme die Polynomfunktion f(x) vom Grad 3, deren Graph eine Nullstelle bei x = -2 und den Hochpunkt H(4|0) hat sowie bei -4 die y-Achse schneidet.

- **1. Lösung**: I. <u>Ganz rationale Funktion</u> (Summe von Potenzen): Ansatz: $f(x) = ax^3 + bx^2 + cx + d$, $f'(x) = 3ax^2 + 2bx + c ->$ Eigenschaften:
- (1) Punkt N(-2|0) als Nullstelle: f(-2) = 0 -> Gleichung: $a \cdot (-2)^3 + b \cdot (-2)^2 + c \cdot (-2) + d = 0$
- (2) Punkt H(4|0) als Nullstelle: f(4) = 0 -> Gleichung: $a \cdot 4^3 + b \cdot 4^2 + c \cdot 4 + d = 0$
- (3) Punkt H(4|0) als Hoch-/Tiefpunkt: f'(4) = 0 -> Gleichung: $3a \cdot 4^2 + 2b \cdot 4 + c = 0$
- (4) Punkt P(0|-4): f(0) = -4 -> Gleichung: $a \cdot 0^3 + b \cdot 0^2 + c \cdot 0 + d = -4$
- II. Koeffizientenbestimmung: 4x4-Gleichungssystem (Dreiecksgestalt) ->

Lineares Gleichungssystem:

Anfangstableau:

- 1. Schritt: 1*(2) + 8*(1) / 1*(3) + 6*(1) /
- -8 4 -2 1 | 0
- 0 48 -12 9 | 0
- 0 32 -11 6 | 0
- 0 0 0 1 | -4
- 2. Schritt: 3*(3) 2*(2) /
- -8 4 -2 1 | 0
- 0 48 -12 9 | 0
- 0 0 -9 0 | 0
- 0 0 0 1 | -4
- 3. Schritt: (keine Umformung) /
- -8 4 -2 1 | 0
- 0 48 -12 9 | 0
- 0 0 -9 0 | 0
- 0 0 0 1 | -4

Dreiecksgestalt des linearen Gleichungssystems:

$$-8a + 4b - 2c + 1d = 0$$

$$+48b - 12c + 9d = 0$$

$$-9c = 0$$

$$+1d = -4$$

Lösungen des linearen Gleichungssystems:

d = -4

c = 0

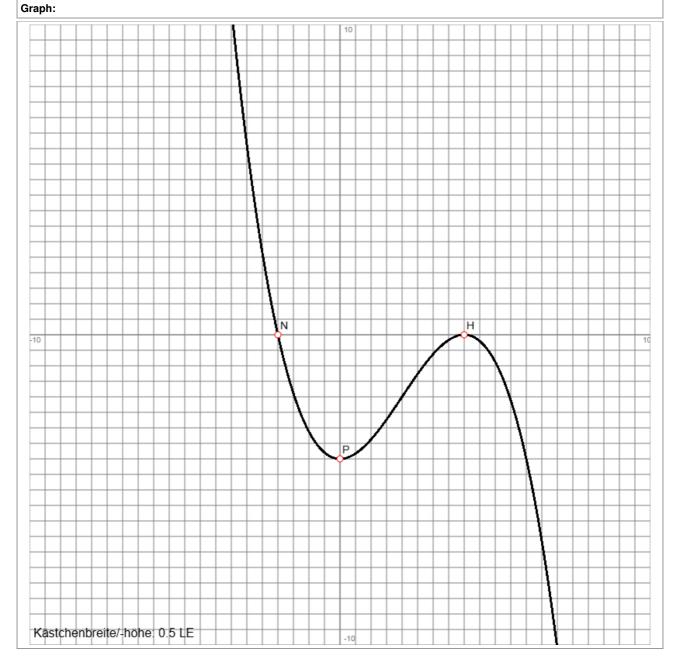
b = 0.75

a = -0.125

III. Funktion: $f(x) = -0.125x^3 + 0.75x^2 - 4$

IV. Wertetabelle, Graph, Ableitungen: $f(x) = -0.125x^3 + 0.75x^2 - 4$; $f'(x) = -0.375x^2 + 1.5x$; f''(x) = -0.75x + 1.5; f'''(x) = -0.75

Wertetabelle:								
x	f(x)	f'(x)	f"(x)	f'''(x)	Besondere Kurvenpunkte			
-2	0	-4.5	3	-0.75	Nullstelle N(-2 0)			
0	-4	0	1.5	-0.75	Schnittpunkt $S_y(0 -4) = Tiefpunkt T(0 -4)$			
2	-2	1.5	0	-0.75	Wendepunkt W(2 -2)			
4	0	0	-1.5	-0.75	Nullstelle N(4 0) = Hochpunkt H(4 0)			



2. Lösung: I. <u>Ganz rationale Funktion</u> (Linearfaktorzerlegung/Produktdarstellung): Ansatz: $f(x) = a(x-x_1)(x-x_2)^2$ mit einfacher Nullstelle x_1 und zweifacher Nullstelle x_2 -> Eigenschaften:

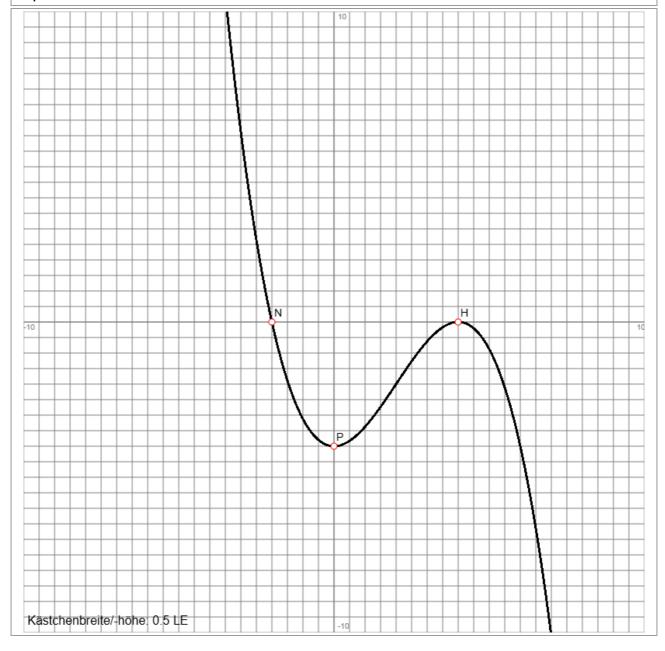
- (1) $x_1 = -2$ als einfache Nullstelle -> Funktionsgleichung: $f(x) = a(x-(-2))(x-x_2)^2 = a(x+2)(x-x_2)^2$ (2) $x_2 = 4$ als zweifache Nullstelle wegen Hochpunkt H(4|0) -> Gleichung: $f(x) = a(x+2)(x-4)^2$
- (3) Schnittpunkt mit y-Achse bei $y = -4 \rightarrow Punkt P(0|-4)$.
- II. Koeffizientenbestimmung: Es ist nur der Koeffizient a zu ermitteln, was gemäß (3) durch Punktprobe geschieht:

$$P(0|-4) \rightarrow f(0) = a(0+2)(0-4)^2 = -4 \Leftrightarrow 32a = -4 \Leftrightarrow a = -1/8 = -0.125.$$

- III. Funktion: $f(x) = -0.125(x+2)(x-4)^2 = -0.125x^3 + 0.75x^2 4$
- IV. Wertetabelle, Graph: $f(x) = -0.125x^3 + 0.75x^2 4$ (siehe 1. Lösung).

Wertetabelle:									
x	f(x)	f'(x)	f"(x)	f'''(x)	Besondere Kurvenpunkte				
-2	0	-4.5	3	-0.75	Nullstelle N(-2 0)				
0	-4	0	1.5	-0.75	Schnittpunkt $S_y(0 -4) = Tiefpunkt T(0 -4)$				
2	-2	1.5	0	-0.75	Wendepunkt W(2 -2)				
4	0	0	-1.5	-0.75	Nullstelle N(4 0) = Hochpunkt H(4 0)				

Graph:



www.michael-buhlmann.de / 05.2024 / Aufgabe 2098