Mathematikaufgaben

> Algebra

> Biquadratische Gleichungen

Aufgabe: Bestimme die Lösung der biquadratischen Gleichung:

$$\frac{1}{2}x^4 = \frac{3}{4}x^2 + 5.$$

Lösung: I. Allgemein gilt für das Lösen von biquadratischen Gleichungen, also von Gleichungen z.B. mit der Variablen x, die folgende <u>Vorgehensweise</u>: Biquadratische Gleichungen sind Gleichungen mit der Variablen x, die der Form $ax^4 + bx^2 + c = 0$ (*) mit reellen Zahlen a, b, c, a \neq 0, genügen. Vermöge der Substitution u = x^2 folgt aus (*) die quadratische Gleichung $au^2 + bu + c = 0$

(**). Die Lösung der quadratischen Gleichung (**) ist dann:
$$u_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 (a-b-c-Formel).

Rücksubstitution $x^2 = u$ liefert somit die Gleichungen: $x^2 = u_1$, $x^2 = u_2$, aus denen sich durch Ziehen der Wurzel die 0 bis 4 Lösungen der biquadratischen Gleichung ergeben.

Um eine biquadratische Gleichung der Form (*) zu erlangen, sind eventuell noch Term- und Gleichungsumformungen durchzuführen, die die Terme der Gleichung u.a. durch das Auflösen von Klammern, durch Addition/Subtraktion von Summanden und Multiplikation/Division von Faktoren betreffen.

II. Wir bringen die Gleichung durch Substitution in die Form $au^2 + bu + c = 0$, lösen die quadratische Gleichung mit der a-b-c-Formel und führen die Rücksubstitution durch:

$$\frac{1}{2}x^4 = \frac{3}{4}x^2 + 5$$
 | .4 | .2x⁴ = 3x² + 20 | .3x² | .20 | .2x⁴ - 3x² = 20 | .20 | (Substitution: $u = x^2$) (a-b-c-Formel: $a = 2$, $b = -3$, $c = -20$) $u_{1,2} = \frac{3 \pm \sqrt{3^2 - 4 \cdot 2 \cdot (-20)}}{2 \cdot 2}$ (Ausrechnen)
$$u_{1,2} = \frac{3 \pm 13}{4}$$
 (Wurzel ausrechnen)
$$u_{1,2} = \frac{3 + 13}{4} = \frac{16}{4} = 4$$
, $u_2 = \frac{3 - 13}{4} = \frac{-10}{4} = -2,5$ (Rücksubstitution: $x^2 = u$)
$$x^2 = 4$$
, $x^2 = -2,5$ x = ±2, (keine Lösung)

Wir erhalten $x_1 = -2$, $x_2 = 2$ als <u>Lösungen</u>; Lösungsmenge ist also: $L = \{-2, 2\}$.

www.michael-buhlmann.de / 10.2020 / Aufgabe 1139