Michael Buhlmann

Mathematikaufgaben

> Analysis

> Funktionenscharen

Aufgabe: Gegeben sei im Folgenden die Funktionenschar nach oben geöffneter Normalparabeln

$$f_a(x) = 2ax - x^2$$

mit reellem Parameter a.

- a) Zeichne die Graphen der Funktionen $f_{-3}(x)$, $f_0(x)$, $f_1(x)$, $f_2(x)$, $f_4(x)$ in ein geeignetes x-y-Koordinatensystem ein.
- b) Zeige, dass alle Funktionen $f_a(x)$ der Kurvenschar durch den Koordinatenursprung O(0|0) verlaufen
- c) Für welche a beträgt der Abstand zwischen den Nullstellen der Funktion $f_a(x)$ 6 Längeneinheiten?
- d) Bestimme die Ortskurve der Hochpunkte der Funktionenschar fa(x).
- e) Für welche Funktion $f_a(x)$ beträgt der Inhalt der Fläche zwischen Funktion und x-Achse $\frac{256}{3}$ Flächeinheiten?

Lösung: a) Es ergeben sich als Wertetabelle und Graphen der Funktionen

$$f_{-1}(x) = -6x - x^2$$

$$f_0(x) = -x^2$$

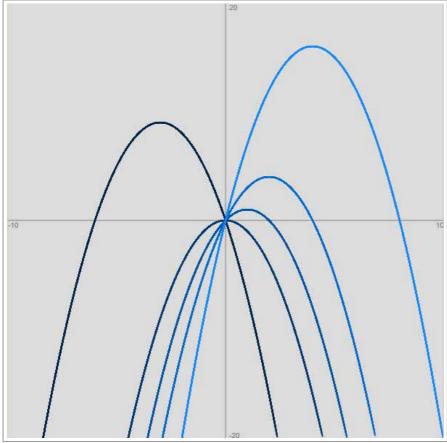
$$f_1(x) = 2x - x^2$$

$$f_2(x) = 4x - x^2$$

$$f_4(x) = 8x - x^2$$

das Folgende:

Wertetabelle:					
х	f ₋₃ (x)	f ₀ (x)	f ₁ (x)	f ₂ (x)	f ₄ (x)
-10	-40	-100	-120	-140	-180
-9	-27	-81	-99	-117	-153
-8	-16	-64	-80	-96	-128
-7	-7	-49	-63	-77	-105
-6	0	-36	-48	-60	-84
-5	5	-25	-35	-45	-65
-4	8	-16	-24	-32	-48
-3	9	-9	-15	-21	-33
-2	8	-4	-8	-12	-20
-1	5	-1	-3	-5	-9
0	0	0	0	0	0
1	-7	-1	1	3	7
2	-16	-4	0	4	12
3	-27	-9	-3	3	15
4	-40	-16	-8	0	16
5	-55	-25	-15	-5	15
6	-72	-36	-24	-12	12
7	-91	-49	-35	-21	7
8	-112	-64	-48	-32	0
9	-135	-81	-63	-45	-9
10	-160	-100	-80	-60	-20
Graphen: Funktionenschar					
			20		



b) Für jedes reelle a ergibt sich wegen:

 $f_a(0) = 2a \cdot 0 - 0^2 = 0$

der Ursprung O[0|0) als gemeinsamer (und einziger) Schnittpunkt aller Funktionskurven.

c) I. Für jedes reelle a und jede Funktion der Funktionenschar $f_a(x) = 2ax - x^2$ errechnen sich die

Nullstellen wegen:

$$f_a(x) = 0 \Leftrightarrow 2ax-x^2 = 0 \Leftrightarrow x(2a-x) = 0 \Leftrightarrow x = 0, 2a-x = 0 \Leftrightarrow x = 0, x = 2a$$

als: N(0|0), N(2a|0). Der Abstand der Nullstellen |2a-0| = |2a| = 2|a| soll nun 6 LE betragen. Es gilt damit

$$2|a| = 6 \Rightarrow |a| = 3 \Rightarrow a = \pm 3.$$

Die gesuchten Funktionen lauten damit: $f_{-3}(x) = -6x - x^2$ (Nullstellen: N(-6|0), N(0|0), $f_{-3}(x) = 6x - x^2$ (Nullstellen: N(0|0), N(6|0).

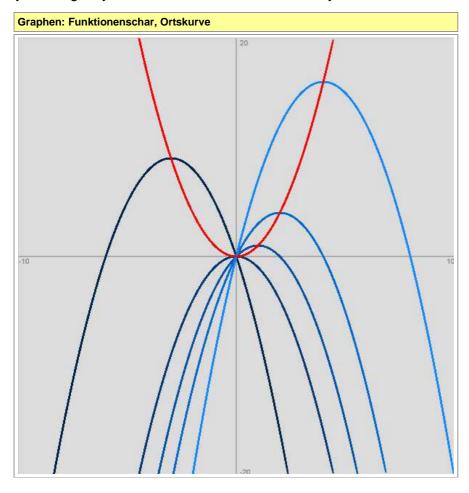
d) I. Der <u>Hochpunkt</u> einer Funktion $f_a(x) = 2ax - x^2$ ergibt sich mit der 1. und 2. Ableitung: $f_a'(x) = 2a - 2x$, $f_a''(x) = -2$ und auf Grund von:

$$f_a(x) = 0 \Leftrightarrow 2a-2x = 0 \Leftrightarrow 2a = 2x \Leftrightarrow x = a$$

und:
$$f_a$$
"(a) = -2 < 0 als H(a| f_a (a)) = H(a| a^2) wegen:

$$f_a(a) = 2a \cdot a - a^2 = 2a^2 - 2a^2 = a^2$$
.

II. Die <u>Ortskurve</u> aller Hochpunkte errechnet sich aus $H(a|a^2)$ durch Setzen von x = a und $y = a^2$, indem wir das a im y-Term durch x ersetzen. Denn aus x = a folgt: a = x, so dass Einsetzen in $y = a^2$ ergibt: $y = x^2$. Die Ortskurve lautet mithin: $y = x^2$.



e) Allgemein bestimmt sich der <u>Flächeninhalt</u> A der Fläche zwischen Parameterfunktion $f_a(x) = 2ax-x^2$ und x-Achse im Bereich der Nullstellen N(0|0) und N(2a|0) (siehe c); hier ist: f(x) nichtnegativ) mit Hilfe des nachstehenden Integrals, wobei I. zunächst a > 0 als Parameter vorausgesetzt wird:

$$A = \int_{0}^{2a} f_a(x) dx = \int_{0}^{2a} (2ax - x^2) dx = \left[ax^2 - \frac{1}{3}x^3 \right]_{0}^{2a} = \left(a \cdot (2a)^2 - \frac{1}{3}(2a)^3 \right) - (0 - 0) = 4a^3 - \frac{8}{3}a^3 = \frac{4}{3}a^3.$$

Nun soll A = $\frac{256}{3}$ FE sein, d.h. es gilt:

$$A = \frac{4}{3}a^3 = \frac{256}{3} \Leftrightarrow 4a^3 = 256 \Leftrightarrow a^3 = 64 \Leftrightarrow a = 4$$
.

Eine gesuchte Funktion lautet mithin: $f_4(x) = 8x - x^2$.

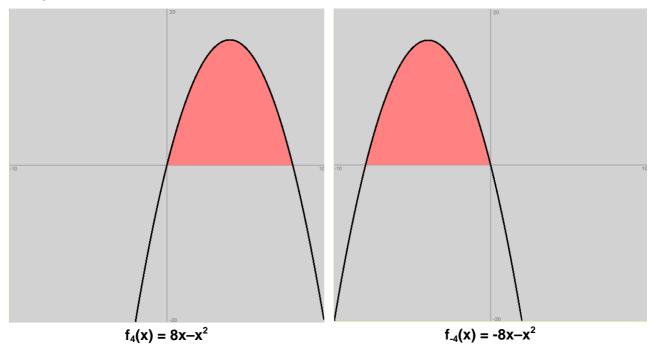
II. Ist der Parameter a < 0, so ist der Flächeninhalt:

$$A = \int_{2a}^{0} f_a(x) dx = \int_{2a}^{0} (2ax - x^2) dx = \left[ax^2 - \frac{1}{3}x^3 \right]_{2a}^{0} = (0 - 0) - \left(a \cdot (2a)^2 - \frac{1}{3}(2a)^3 \right) = -4a^3 + \frac{8}{3}a^3 = -\frac{4}{3}a^3.$$

Nun ist wieder A = $\frac{256}{3}$ FE, so dass folgt:

$$A = -\frac{4}{3}a^3 = \frac{256}{3} \Leftrightarrow -4a^3 = 256 \Leftrightarrow a^3 = -64 \Leftrightarrow a = -4.$$

Eine gesuchte Funktion lautet mithin: $f_{-4}(x) = -8x - x^2$.



Abkürzungen: FE = Flächeneinheit, LE = Längeneinheit.

www.michael-buhlmann.de / 12.2017 / Aufgabe 545