Michael Buhlmann

Mathematikaufgaben

> Funktionen

> Geraden

Aufgabe: Zur vorgegebenen Geraden

g:
$$y = \frac{3}{4}x + 2$$

soll eine dazu parallele Gerade h durch den Punkt P(-4|2) ermittelt werden.

Lösung: I. Geraden g: $y = m_1x + c_1$ und h: $y = m_2x + c_2$ mit m_1 , m_2 als Geradensteigungen und c_1 , c_2 als y-Achsenabschnitte sind zueinander parallel, wenn ihre Geradensteigungen übereinstimmen: $m_1 = m_2$. Parallele Geraden unterscheiden sich demnach durch ihre y- Achsenabschnitte. Ist eine Gerade g: $y = m_1x + c_1$ vorgegeben sowie ein Punkt $P(x_0|y_0)$, der nicht auf der Geraden g liegt, so ist die zu g parallele Gerade h: $y = m_2x + c_2$ vermöge $m_2 = m_1$ und Punktprobe mit dem Punkt P gemäß:

$$P(x_0|y_0)$$
 -> Punktprobe -> h: $y_0 = m_2x_0 + c_2 \Leftrightarrow c_2 = y_0 - m_2x_0$

zu bilden.

II. Gemäß I. haben wir für die Gerade h den Ansatz: h: y = mx + c, wobei wegen der Parallelität zur Geraden g: $y = \frac{3}{4}x + 2$ die Steigung $m = \frac{3}{4} = 0.75$ ist und damit: h: y = 0.75x + c. Zur Bestimmung des y-Achsenabschnitts c der Geraden h setzen wir vermittelst Punktprobe den vorgegebenen

$$P(-4|2) \rightarrow 2 = 0.75 \cdot (-4) + c \Leftrightarrow 2 = -3 + c \Leftrightarrow c = 5.$$

Punkt P(-4|2) ein und erhalten:

Die gesuchte Gerade h lautet also: h: y = 0.75x + 5.

