Mathematikaufgaben

> Analysis

> Hoch-/Tief-/Wendepunkte – Monotonie/Krümmung

Aufgabe: Die ganz rationale Funktion 4. Grades:

$$f(x) = 3x^4 - 4x^3$$

ist auf Hoch-, Tief- und Wendepunkte zu untersuchen sowie auf Monotonie und Krümmung.

Lösung: I. a) Allgemein ist bei der Untersuchung einer differenzierbaren Funktion f(x) auf <u>Hochund Tiefpunkte</u> als Extrempunkte (Punkte mit waagerechter Tangente) zu beachten:

 $f'(x) = 0 \Rightarrow x_1, \dots$ als Hoch-, Tief- oder Sattelpunkte der Funktion (notwendige Bedingung)

 $f''(x_1) > 0 => relatives Minimum/Tiefpunkt T(x_1|f(x_1))$

 $f''(x_1) < 0 \Rightarrow$ relatives Maximum/Hochpunkt $H(x_1|f(x_1))$ (hinreichende Bedingung)

bzw.

 $f'(x) = 0 \Rightarrow x_1, \dots$ als Hoch-, Tief- oder Sattelpunkte der Funktion (notwendige Bedingung)

 $f'(x_1-h)<0$, $f'(x_1)=0$, $f'(x_1+h)>0$ für ein gewisses positives h nahe $0 => Vorzeichenwechsel der Ableitung von – nach + => Tiefpunkt <math>T(x_1|f(x_1))$

 $f'(x_1-h)>0$, $f'(x_1)=0$, $f'(x_1+h)<0$ für ein gewisses positives h nahe $0 => Vorzeichenwechsel der Ableitung von + nach <math>- => Hochpunkt H(x_1|f(x_1))$

 $f'(x_1-h)>0$, $f'(x_1)=0$, $f'(x_1+h)>0$ für ein gewisses positives h nahe $0 => kein Vorzeichenwechsel => Sattelpunkt <math>S(x_1|f(x_1))$

 $f'(x_1-h)<0$, $f'(x_1)=0$, $f'(x_1+h)<0$ für ein gewisses positives h nahe $0 => kein Vorzeichenwechsel => Sattelpunkt <math>S(x_1|f(x_1))$ (hinreichende Bedingung).

b) Bei der Untersuchung einer differenzierbaren Funktion f(x) auf <u>Wendepunkte</u> ist folgendermaßen vorzugehen:

 $f''(x) = 0 \Rightarrow x_1, \dots$ als Wendepunkte der Funktion (notwendige Bedingung)

 $f'''(x_1) > 0 => Wendepunkt W(x_1|f(x_1))$ mit Übergang von einer Rechts- zu einer Linkskrümmung

 $f'''(x_1) < 0 =>$ Wendepunkt $W(x_1|f(x_1))$ mit Übergang von einer Links- zu einer Rechtskrümmung (hinreichende Bedingung)

bzw.:

 $f''(x) = 0 \Rightarrow x_1, \dots$ als Wendepunkte der Funktion (notwendige Bedingung)

 $f''(x_1-h)<0$, $f''(x_1)=0$, $f''(x_1+h)>0$ für ein gewisses positives h nahe $0 => Vorzeichenwechsel der Ableitung von – nach <math>+ => Wendepunkt W(x_1|f(x_1))$ mit Übergang von einer Rechts- zu einer Linkskrümmung

 $f''(x_1-h)>0$, $f''(x_1)=0$, $f''(x_1+h)<0$ für ein gewisses positives h nahe $0 => Vorzeichenwechsel der Ableitung von + nach <math>- => Wendepunkt \ W(x_1|f(x_1))$ mit Übergang von einer Links- zu einer Rechtskrümmung (hinreichende Bedingung).

Sattelpunkte sind Wendepunkte mit waagerechter Tangente.

c) Bei einer differenzierbaren Funktion f(x) mit Definitionsbereich $D_f = \mathbf{R}$ ergibt sich als (streng) steigende/fallende Monotonie in (offenen) Monotonieintervallen bei abwechselnden Hoch- und Tiefpunkten $x_1, x_2, ..., x_n$ mit $x_1 < x_2 < ... < x_n, x_0$ als Stelle im jeweiligen Monotonieintervall:

Monotonieintervall ($-\infty$, x_1): f(x) monoton steigend (x_1 als Hochpunkt, $f'(x_0)>0$) oder monoton fallend (x_1 als Tiefpunkt, $f'(x_0)<0$)

Monotonieintervall (x_1, x_2) : f(x) monoton fallend $(x_1$ als Hochpunkt, x_2 als Tiefpunkt, vorheriges Intervall mit steigender Monotonie, $f'(x_0)<0$) oder monoton steigend $(x_1$ als Tiefpunkt, x_2 als Hochpunkt, vorheriges Intervall mit fallender Monotonie $f'(x_0)>0$); ...

Monotonieintervall (x_n, ∞) : f(x) monoton fallend $(x_n$ als Hochpunkt, vorheriges Intervall mit steigender Monotonie $f'(x_0)<0$) oder monoton steigend $(x_n$ als Tiefpunkt, vorheriges Intervall mit fallender Monotonie, $f'(x_0)>0$).

Bei einem Sattelpunkt ändert sich die (strenge) Monotonie nicht, so dass die Monotonieintervalle Sattelpunkte immer enthalten.

d) Bei einer differenzierbaren Funktion f(x) mit Definitionsbereich $D_f = \mathbf{R}$ folgt aus den Wendepunkten $x_1, x_2, ..., x_n$ mit $x_1 < x_2 < ... < x_n, x_0$ als Stelle im jeweiligen Krümmungsintervall eine <u>Links</u>oder <u>Rechtskrümmung</u> gemäß:

Krümmungsintervall ($-\infty$, x_1): f(x) links gekrümmt (x_1 als Wendepunkt, $f''(x_0)>0$, Tiefpunkt x_0) oder rechts gekrümmt (x_1 als Wendepunkt, $f''(x_0)<0$, Hochpunkt x_0)

Krümmungsintervall (x_1, x_2) : f(x) rechts gekrümmt $(x_1$ als Wendepunkt, x_2 als Wendepunkt, vorheriges Intervall mit Linkskrümmung, $f''(x_0)<0$, Hochpunkt x_0) oder links gekrümmt $(x_1$ als Wendepunkt, x_2 als Wendepunkt, vorheriges Intervall mit Rechtskrümmung $f''(x_0)>0$, Tiefpunkt x_0); ...

Krümmungsintervall (x_n, ∞) : f(x) rechts gekrümmt $(x_n$ als Wendepunkt, vorheriges Intervall mit Linkskrümmung, $f''(x_0)<0$, Hochpunkt x_0) oder links gekrümmt $(x_n$ als Wendepunkt, vorheriges Intervall mit Rechtskrümmung $f''(x_0)>0$, Tiefpunkt x_0).

II. Wir berechnen die 1., 2. und 3. <u>Ableitung</u> (Ableiten gemäß Summenregel, Potenzregel und Regel mit konstantem Faktor):

$$f'(x) = 12x^3 - 12x^2$$

$$f''(x) = 36x^2 - 24x$$

$$f'''(x) = 72x - 24$$
.

III. <u>Hoch-, Tiefpunkte</u>: Nullsetzen der 1. Ableitung (notwendige Bedingung) führt auf die Gleichungsumformungen:

$$f'(x) = 0 \Leftrightarrow 12x^3 - 12x^2 = 0 \Leftrightarrow x^2(12x - 12) = 0 \Leftrightarrow x^2 = 0 \lor 12x - 12 = 0 \Leftrightarrow x = 0 \lor x = 1$$

so dass x=0 und x=1 die Stellen sind, an denen die Funktion f(x) jeweils eine waagerechte Tangente besitzt. Einsetzen von x=0 in die 2. Ableitung (hinreichende Bedingung) ergibt aber nun:

$$f''(0) = 36 \cdot 0^2 - 24 \cdot 0 = 0$$

so dass unklar ist, ob bei x=0 ein Hoch-, Tief- oder Sattelpunkt vorliegt. Wir untersuchen daher die Stelle x=0 im Abschnitt über Wendepunkte. Die zweite Stelle x=1 führt wegen:

$$f''(1) = 36 \cdot 1^2 - 24 \cdot 1 = 12 > 0$$

auf das Vorhandensein eines Tiefpunkts. Der Funktionswert des Tiefpunkts errechnet sich als:

$$f(1) = 4 \cdot 1^4 - 4 \cdot 1^3 = -1.$$

Die Funktion f(x) besitzt damit den Tiefpunkt T(1|-1).

IV. <u>Wendepunkte</u>: Nullsetzen der 2. Ableitung (notwendige Bedingung) führt auf die Gleichungsumformungen:

$$f''(x) = 0 \Leftrightarrow 36x^2 - 24x = 0 \Leftrightarrow x(36x - 24) = 0 \Leftrightarrow x = 0 \lor 36x - 24 = 0 \Leftrightarrow x = 0 \lor x = \frac{2}{3}$$

mit den Wendestellen x=0 und x=2/3 auf Grund von:

$$f'''(0) = 72 \cdot 0 - 24 = -24 < 0$$

$$f'''(\frac{2}{3}) = 72 \cdot \frac{2}{3} - 24 = 24 > 0$$

(hinreichende Bedingung). An der Stelle x=0 geht also – wenn wir die Kurve der Funktion f(x) im Koordinatensystem von links nach rechts durchlaufen – eine Links- in eine Rechtskrümmung über, an der x=2/3 eine Rechts- in eine Linkskrümmung. Die entsprechenden Funktionswerte lauten:

$$f(0) = 4 \cdot 0^4 - 4 \cdot 0^3 = 0$$

$$f(\frac{2}{3}) = 4 \cdot \left(\frac{2}{3}\right)^4 - 4 \cdot \left(\frac{2}{3}\right)^3 = -\frac{16}{27}$$

so dass sich – wegen der waagerechten Tangente der Funktion f(x) an der Stelle x=0 – der Sattelpunkt $W_1(0|0)$ und der Wendepunkt $W_2(2/3|-16/27)$ ergeben.

V. Der Tiefpunkt T(1|-1) unterteilt den Definitionsbereich $D_f = \mathbf{R}$ der Funktion f(x) in die zwei Monotonieintervalle (- ∞ ; 1) und (1; ∞), für die gilt:

Hoch-/Tiefpunkt	Monotonieintervall	Monotonie
[Sattelpunkt S(0 0)]	-(-∞; 1)	f(x) ist (streng) monoton fallend
Tiefpunkt T(1 -1)		
	(1; ∞)	f(v) ist (strong) monoton staigand
		f(x) ist (streng) monoton steigend

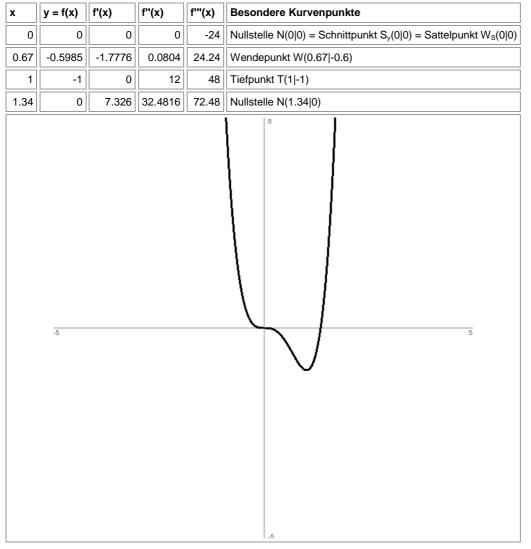
Hinsichtlich der Monotonie der Funktion ist damit festzuhalten: f(x) ist (streng) monoton fallend im Intervall (- ∞ ; 1) und (streng) monoton steigend im Intervall (1; ∞).

VI. Die Wendepunkte $W_1(0|0)$ (als Sattelpunkt) und $W_2(2/3|-32/81)$ unterteilen den Definitionsbereich $D_f = \mathbf{R}$ der Funktion f(x) in die drei Krümmungsintervalle (- ∞ ; 0), (0; 2/3) und (2/3; ∞) mit:

Wendepunkt	Krümmungsintervall	Krümmung
	(-∞; 0)	f(x) ist links gekrümmt
Sattelpunkt W₁(0 0)	(, 5)	Text in the gent and the
	(0; 2/3)	f(x) ist rechts gekrümmt
Wendepunkt W ₂ (2/3 -16/27)	(0, 2/3)	I(x) ist recits gertuinint
	(2/2: m)	f(x) ist links gekrümmt
Tiefpunkt T(1 -1)	(2/3; ∞)	

Hinsichtlich der Krümmung ergibt sich also: f(x) ist links gekrümmt auf den Intervallen $(-\infty; 0)$ und $(2/3; \infty)$ sowie rechts gekrümmt auf dem Intervall (0; 2/3).

VII. Wertetabelle, Zeichnung:



www.michael-buhlmann.de / 11.2019 / Aufgabe 891