Mathematikaufgaben

> Analysis

> Kurvendiskussion/Funktionsuntersuchung

Aufgabe: Gegeben ist die gebrochen rationale Funktion $f(x) = \frac{x^2 + 4}{2x}$. Charakterisiere den Funktionsverlauf u.a. durch Untersuchung auf Extrempunkte, senkrechte und schiefe Asymptoten.

Lösung: I. Allgemein gilt für die Kurvendiskussion/Funktionsuntersuchung einer gebrochen rationalen Funktion f(x) die folgende <u>Vorgehensweise</u>:

Zentrale Punkte der Kurvendiskussion

Funktion:
$$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0} = \frac{a_n (x - x_{N1})^{k_1} (x - x_{N2})^{k_2} \cdot \dots \cdot R_1(x)}{b_m (x - x_{P1})^{k_1} (x - x_{P2})^{k_1} \cdot \dots \cdot R_2(x)}$$

- I. (Maximaler) Definitionsbereich, senkrechte Asymptoten (Polstellen), Nullstellen:
- a) Nenner = $0 \rightarrow b_m x^m + b_{m-1} x^{m-1} + ... + b_1 x + b_0 = 0 \rightarrow x_{P1}, x_{P2}, ... \rightarrow D_f = \mathbf{R} \setminus \{x_{P1}, x_{P2}, ...\}$ (Definitionsbereich)
- b) Zähler = $0 \rightarrow a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = 0 \rightarrow x_{N1}, x_{N2}, ...$
- c) Auswertung:
- Stimmt eine Nennernullstelle x_P mit einer Zählernullstelle x_N überein, so kann der Funktionsterm f(x) um den Faktor $(x-x_p)^l = (x-x_N)^k$ (l=k) zu $f^*(x)$ gekürzt werden; ist die Vielfachheit der Nennernullstelle echt größer k, so liegt bei x_P eine senkrechte Asymptote vor; ist die Vielfachheit der Nennernullstelle kleiner gleich k, so liegt bei x_P eine Lücke mit Lückenwert $f^*(x_P)$ vor.
- Ansonsten liegen bei x_{P1} , x_{P2} , ... senkrechte Asymptoten mit Linearfaktor $(x-x_p)^l$ vor, und zwar mit Vorzeichenwechsel bei ungeradem I (mit Vorzeichenwechsel bei senkrechter Asymptote x_P mit $f(x)->-\infty$ $(x-x_P, x-x_P)$ und $f(x)->\infty$ $(x-x_P, x-x_P)$ und $f(x)-x_P$ und $f(x)-x_P$ und $f(x)-x_P$ und $f(x)-x_P$ und $f(x)-x_P$ with $f(x)-x_P$ und $f(x)-x_P$ und
- Ansonsten liegen weiter bei x_{N1} , x_{N2} , ... Nullstellen mit Linearfaktor $(x-x_p)^k$ vor, und zwar mit Vorzeichenwechsel bei ungeradem k, ohne Vorzeichenwechsel bei geradem k (Hoch-, Tiefpunkt).
- II. Waagerechte Asymptote: Für x -> ±∞ gilt:

$$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

$$\begin{cases} -> 0 & \text{falls n < m} \\ -> \frac{a_n}{b_m} & \text{falls n = m} \\ -> \pm \infty & \text{falls n > m} \end{cases}$$

Im Fall n>m ergibt sich (eventuell nach Polynomdivision) eine Grenzkurve y = $\frac{a_n}{b_m} x^{n-m} + ...$; die Näherungs-

kurve ist eine schiefe Asymptote (Gerade) y = mx+c, wenn n=m+1 gilt.

- III. Ableitungen (nach Quotientenregel; zuvor (wenn möglich) Funktionsterm f(x) zu $f^*(x)$ kürzen; bei Ableitungen gleiche Faktoren in allen Summanden des Bruchs kürzen; zu beachten sind Vorgehensweisen zum leichteren Ableiten, d.h.: Vermeidung der Quotientenregel bei konstantem Zähler und Anwendung der Kettenregel, Vermeidung der Quotientenregel z.B. bei gebrochen rationalen Funktionen mit Nenner als Potenz x^n und Anwendung der Potenzregel)
- IV. Hochpunkte, Tiefpunkte (relative Extrema; Gleichung f'(x) = 0 lösen, Lösungen in f''(x) einsetzen):
- a) $f'(x) = 0 -> x_1, x_2, ...$
- b) $f''(x_1) < 0 -> H(x_1|f(x_1))$ oder $f''(x_1) > 0 -> T(x_1|f(x_1))$; $f''(x_2) < 0 -> H(x_2|f(x_2))$ oder $f''(x_2) > 0 -> T(x_2|f(x_2))$; ...
- V. Wendepunkte (Gleichung f''(x) = 0 lösen, Lösungen in f'''(x) einsetzen):
- a) $f''(x) = 0 \rightarrow x_1, x_2, ...$
- b) $f'''(x_1) \neq 0 \rightarrow W(x_1|f(x_1))$; $f'''(x_2) \neq 0 \rightarrow W(x_2|f(x_2))$; ...

Va. Sattelpunkte x₀ liegen vor, wenn (nach IV. und V.) gilt:

 $f'(x_0) = 0$, $f''(x_0) = 0$, $f'''(x_0) \neq 0 \rightarrow S(x_0|f(x_0))$

Kurvendiskussion gebrochen rationaler Funktionen

Zusätzliche Punkte der Kurvendiskussion

- VI. Monotonie (steigende [wachsende], fallende Monotonie [nach I., IV.]; bei Hoch- und Tiefpunkten sowie senkrechten Asymptoten $x_1, x_2, ..., x_n$ mit $x_1 < x_2 < ... < x_n$, x_0 als Stelle im jeweiligen Monotonieintervall):
- Monotonieintervall (-∞, x_1): f(x) monoton steigend (x_1 als Hochpunkt, x_1 als Polstelle mit f(x)->∞ (x-> x_1 , x-(x_1), $f(x_0)$ -0) oder monoton fallend (x_1 als Tiefpunkt, x_1 als Polstelle mit f(x)->-∞ (x-> x_1 , x-> x_1), $f(x_0)$ -0);
- Monotonieintervall (x_1, x_2) : f(x) monoton fallend $(x_1$ als Hochpunkt, x_2 als Tiefpunkt, x_1 als Polstelle mit f(x)->∞ (x-> x_1 , x-> x_1 , x-> x_1 , x-> x_2 als Polstelle mit f(x)->∞ f(x)->∞ f(x)->f(x)->0 oder monoton steigend f(x)->-∞ f(x)->-∞
- Monotonieintervall (x_n, ∞) : f(x) monoton fallend $(x_n$ als Hochpunkt, x_n als Polstelle mit $f(x) \infty$ $(x x_n, x x_n)$, $f'(x_0) < 0$) oder monoton steigend $(x_n$ als Tiefpunkt, x_n als Polstelle mit $f(x) \infty$ $(x x_n, x x_n)$, $f'(x_0) > 0$)
- VII. Krümmung (Links-, Rechtskrümmung, Konvexität, Konkavität [nach I., V.]; bei Wendepunkten sowie senkrechten Asymptoten $x_1, x_2, ..., x_n$ mit $x_1 < x_2 < ... < x_n$, x_0 als Stelle im jeweiligen Krümmungsintervall):
- Krümmungsintervall ($-\infty$, x_1): f(x) links gekrümmt (bei Tiefpunkt im Intervall, x_1 als Polstelle mit f(x)- $>\infty$ (x- $>x_1$, x< x_1), f"(x₀)>0) oder rechts gekrümmt (bei Hochpunkt im Intervall, x_1 als Polstelle mit f(x)- $>-\infty$ (x- $>x_1$, x< x_1), f"(x₀)>0);
- Krümmungsintervall $(x_n, ∞)$: f(x) rechts gekrümmt (bei Hochpunkt im Intervall, x_n als Polstelle mit f(x)->-∞ $(x->x_n, x>x_n)$, $f'(x_0)<0$) oder links gekrümmt (bei Tiefpunkt im Intervall, x_n als Polstelle mit f(x)->∞ $(x->x_n, x>x_n)$, $f'(x_0)>0$); ...

VIII. Symmetrie:

a) Achsensymmetrie (zur y-Achse; für gerade Funktionen): f(-x) = f(x) oder:

Zähler gerade, Nenner gerade -> f(x) gerade

Zähler ungerade, Nenner ungerade -> f(x) gerade

b) Punktsymmetrie (zum Ursprung; für ungerade Funktionen): f(-x) = -f(x) oder:

Zähler gerade, Nenner ungerade -> f(x) ungerade

Zähler ungerade, Nenner gerade -> f(x) ungerade

- c) f(x) achsensymmetrisch -> f'(x) punktsymmetrisch -> f''(x) achsensymmetrisch usw.
- f(x) punktsymmetrisch -> f'(x) achsensymmetrisch -> f''(x) punktsymmetrisch usw.

Kurvendiskussion gebrochen rationaler Funktionen

II. <u>Umformen der Funktionsvorschrift</u>: Die gebrochen rationale Funktion f(x) kann wie folgt umgeformt werden:

$$f(x) = \frac{x^2 + 4}{2x} = \frac{x^2}{2x} + \frac{4}{2x} = \frac{x}{2} + \frac{2}{x} = \frac{1}{2}x + \frac{2}{x}$$

Wir werden im Folgenden die beiden Darstellungen des Funktionsterms $f(x) = \frac{x^2 + 4}{2x}$ bzw.

$$f(x) = \frac{1}{2}x + \frac{2}{x}$$
 benutzen.

III. <u>Nullstellen</u>: Wir setzen den Zähler der Funktion $f(x) = \frac{x^2 + 4}{2x}$ gleich 0 und erhalten sofort:

$$f(x) = 0 \Leftrightarrow \frac{x^2 + 4}{2x} = 0 \Leftrightarrow x^2 + 4 = 0 \Leftrightarrow x^2 = -4$$

und somit keine Nullstellen der Funktion.

IV. <u>Senkrechte Asymptoten/Polstellen</u>: Wir setzen den Nenner der Funktion $f(x) = \frac{x^2 + 4}{2x}$ gleich

0 und haben:

$$2x = 0 \Leftrightarrow x = 0$$
.

Wegen der Vielfachheit 1 des Linearfaktors x im Nenner des Funktionsterms liegt an der Stelle x=0 eine senkrechte Asymptote mit Vorzeichenwechsel vor. Hinsichtlich des <u>Definitionsbereichs</u> der Funktion f(x) gilt dann noch: $D_f = \mathbf{R} \setminus \{0\}$.

V. Schiefe Asymptote: Wir betrachten f(x) für betragsmäßig große x, also:

$$x \rightarrow \pm \infty \implies f(x) = \frac{x^2 + 4}{2x} \rightarrow \pm \infty$$

da der Grad des Zählerpolynoms um 1 größer ist als der des Nennerpolynoms. Die schiefe Asymptote y, die sich folglich ergibt gemäß der Darstellung der Funktion als $f(x) = \frac{1}{2}x + \frac{2}{x}$, ist die Ursprungsgerade:

$$y = \frac{1}{2}x.$$

VI. Für die <u>Ableitungen</u> benutzen wir den Funktionsterm $f(x) = \frac{1}{2}x + \frac{2}{x}$ und erhalten:

Funktion:
$$f(x) = \frac{1}{2}x + \frac{2}{x} = \frac{1}{2}x + 2x^{-1}$$

1. Ableitung:
$$f'(x) = \frac{1}{2} - 2x^{-2} = \frac{1}{2} - \frac{2}{x^2}$$

2. Ableitung:
$$f''(x) = 4x^{-3} = \frac{4}{x^3}$$

3. Ableitung:
$$f'''(x) = -12x^{-4} = -\frac{12}{x^4}$$
.

VII. Hoch-, Tiefpunkte: Nullsetzen der 1. Ableitung führt auf:

$$f'(x) = 0 \Leftrightarrow \frac{1}{2} - \frac{2}{x^2} = 0 \Leftrightarrow x^2 = 4 \Leftrightarrow x = \pm 2$$
.

An der Stelle x=-2 beträgt der Wert der 2. Ableitung:

$$f''(-2) = \frac{4}{(-2)^3} = -\frac{1}{2} < 0,$$

so dass wegen f(-2) = -1 - 1 = -2 ein Hochpunkt H(-2|-2) vorliegt. An der Stelle x=2 gilt:

$$f''(2) = \frac{4}{2^3} = \frac{1}{2} > 0$$

mit f(2) = 1+1 = 2 und dem Tiefpunkt T(2|2).

VII. Wendepunkte existieren nicht wegen:

$$f''(x) = \frac{4}{x^3} \neq 0$$

für alle $x \in D_f = \mathbf{R} \setminus \{0\}$.

VIII. Wegen der senkrechten Asymptote bzw. Polstelle bei x=0 ergeben sich auf der Grundlage der Extrempunkte von f(x) die Monotonieintervalle mit der Monotonie:

(-∞; -2): f(x) ist monoton steigend (Hochpunkt H(-2|-2))

(-2; 0): f(x) ist monoton fallend (Hochpunkt H(-2|-2), Polstelle mit Vorzeichenwechsel bei x=0)

(0; 2): f(x) ist monoton fallend (Polstelle mit Vorzeichenwechsel bei x=0, Tiefpunkt T(2|2))

(2; ∞): f(x) ist monoton steigend (Tiefpunkt T(2|2)).

IX. Wegen der senkrechten Asymptote bzw. Polstelle bei x=0 liegen folgende Krümmungsintervalle und Krümmungseigenschaften von f(x) vor:

 $(-\infty; 0)$: f(x) ist rechts gekrümmt (Hochpunkt H(-2|-2), Polstelle mit Vorzeichenwechsel bei x=0) $(0; \infty)$: f(x) ist links gekrümmt (Polstelle mit Vorzeichenwechsel bei x=0, Tiefpunkt T(2|2)).

X. Die Funktion $f(x) = \frac{x^2 + 4}{2x}$ besitzt zudem <u>Punktsymmetrie</u> zum Ursprung O(0|0) des Koordi-

natensystems, da der Zähler $y = x^2+4$ eine zur y-Achse achsensymmetrische, der Nenner y = 2x eine zum Koordinatenursprung punktsymmetrische Teilfunktion darstellt.

XI. Wertetabelle, Zeichnung:

All <u>Westerabelle</u> ; <u>Zelerinang</u> :				
x	y = f(x)	f'(x)	f"(x)	Besondere Kurvenpunkte
-2	-2	0	-0.5	Hochpunkt H(-2 -2)
0	±∞	-∞	±∞	Senkrechte Asymptote/Pol x = 0
2	2	0	0.5	Tiefpunkt T(2 2)
-10			H	T 10

www.michael-buhlmann.de / 05.2019 / Aufgabe 856