Mathematikaufgaben

> Analysis

> Kurvendiskussion/Funktionsuntersuchung

Aufgabe: Gegeben ist die gebrochen rationale Betragsfunktion $f(x) = |x| + x - 2 + \frac{2}{|x|}$. Charakteri-

siere den Funktionsverlauf u.a. durch Untersuchung auf Nullstellen, Extrem- und Wendepunkte, senkrechte, waagerechte und schiefe Asymptoten sowie Lücken.

Lösung: I. Allgemein gilt für die Kurvendiskussion/Funktionsuntersuchung einer gebrochen rationalen Funktion f(x) die folgende Vorgehensweise:

Zentrale Punkte der Kurvendiskussion

Funktion:
$$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0} = \frac{a_n (x - x_{N1})^{k_1} (x - x_{N2})^{k_2} \cdot \dots \cdot R_1(x)}{b_m (x - x_{P1})^{k_1} (x - x_{P2})^{k_1} \cdot \dots \cdot R_2(x)}$$

- I. (Maximaler) Definitionsbereich, senkrechte Asymptoten (Polstellen), Nullstellen:
- a) Nenner = 0 -> $b_m x^m + b_{m-1} x^{m-1} + ... + b_1 x + b_0 = 0$ -> $x_{P1}, x_{P2}, ...$ -> $D_f = \mathbf{R} \setminus \{x_{P1}, x_{P2}, ...\}$ (Definitionsbereich)
- b) Zähler = 0 -> $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = 0$ -> $x_{N1}, x_{N2}, ...$
- c) Auswertung:
- Stimmt eine Nennernullstelle x_P mit einer Zählernullstelle x_N überein, so kann der Funktionsterm f(x) um den Faktor $(x-x_p)^l = (x-x_N)^k$ (I=k) zu $f^*(x)$ gekürzt werden; ist die Vielfachheit der Nennernullstelle echt größer k, so liegt bei x_P eine senkrechte Asymptote vor; ist die Vielfachheit der Nennernullstelle kleiner gleich k, so liegt bei x_P eine Lücke mit Lückenwert $f^*(x_P)$ vor.
- Ansonsten liegen bei x_{P1} , x_{P2} , ... senkrechte Asymptoten mit Linearfaktor $(x-x_p)^l$ vor, und zwar mit Vorzeichenwechsel bei ungeradem I (mit Vorzeichenwechsel bei senkrechter Asymptote x_P mit $f(x)->-\infty$ $(x-x_P, x-x_P)$ und $f(x)->\infty$ $(x-x_P, x-x_P)$ und $f(x)-x_P$ und $f(x)-x_P$ vor. $f(x)-x_P$ und $f(x)-x_P$ und $f(x)-x_P$ with $f(x)-x_P$ und $f(x)-x_P$ und
- Ansonsten liegen weiter bei x_{N1} , x_{N2} , ... Nullstellen mit Linearfaktor $(x-x_p)^k$ vor, und zwar mit Vorzeichenwechsel bei ungeradem k, ohne Vorzeichenwechsel bei geradem k (Hoch-, Tiefpunkt).
- II. Waagerechte Asymptote: Für x -> ±∞ gilt:

$$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

$$\begin{cases} -> 0 & \text{falls n < m} \\ -> \frac{a_n}{b_m} & \text{falls n = m} \\ -> \pm \infty & \text{falls n > m} \end{cases}$$

Im Fall n>m ergibt sich (eventuell nach Polynomdivision) eine Grenzkurve y = $\frac{a_n}{b_m} x^{n-m} + ...$; die Näherungs-

kurve ist eine schiefe Asymptote (Gerade) y = mx+c, wenn n=m+1 gilt.

- III. Ableitungen (nach Quotientenregel; zuvor (wenn möglich) Funktionsterm f(x) zu f*(x) kürzen; bei Ableitungen gleiche Faktoren in allen Summanden des Bruchs kürzen; zu beachten sind Vorgehensweisen zum leichteren Ableiten, d.h.: Vermeidung der Quotientenregel bei konstantem Zähler und Anwendung der Kettenregel, Vermeidung der Quotientenregel z.B. bei gebrochen rationalen Funktionen mit Nenner als Potenz xⁿ und Anwendung der Potenzregel)
- IV. Hochpunkte, Tiefpunkte (relative Extrema; Gleichung f'(x) = 0 lösen, Lösungen in f'(x) einsetzen):
- a) $f'(x) = 0 -> x_1, x_2, ...$
- b) $f'(x_1) < 0 \rightarrow H(x_1|f(x_1))$ oder $f'(x_1) > 0 \rightarrow T(x_1|f(x_1))$; $f'(x_2) < 0 \rightarrow H(x_2|f(x_2))$ oder $f'(x_2) > 0 \rightarrow T(x_2|f(x_2))$; ...
- V. Wendepunkte (Gleichung f''(x) = 0 lösen, Lösungen in f'''(x) einsetzen):
- a) $f''(x) = 0 -> x_1, x_2, ...$
- b) $f'''(x_1) \neq 0 \rightarrow W(x_1|f(x_1))$; $f'''(x_2) \neq 0 \rightarrow W(x_2|f(x_2))$; ...
- Va. Sattelpunkte x₀ liegen vor, wenn (nach IV. und V.) gilt:
- $f'(x_0) = 0$, $f''(x_0) = 0$, $f'''(x_0) \neq 0 -> S(x_0|f(x_0))$

Kurvendiskussion gebrochen rationaler Funktionen

II. <u>Umformen der Funktionsvorschrift</u>: Die gebrochen rationale Betragsfunktion f(x) kann wie folgt umgeformt werden:

$$f(x) = |x| + x - 2 + \frac{2}{|x|} = \frac{|x|^2}{|x|} + \frac{x|x|}{|x|} - \frac{2|x|}{|x|} + \frac{2}{|x|} = \frac{|x|^2 + x|x| - 2|x| + 2}{|x|} = \frac{x^2 + |x|(x - 2) + 2}{|x|}$$

$$f(x) = |x| + x - 2 + \frac{2}{|x|} = \begin{cases} x + x - 2 + \frac{2}{x} = 2x - 2 + \frac{2}{x} & (x > 0) \\ -x + x - 2 + \frac{2}{-x} = -2 - \frac{2}{x} & (x < 0) \end{cases}$$

$$(**).$$

Gemäß (**) besteht die Funktion von f(x) aus zwei gebrochen rationalen Teilfunktionen. Die Umformungen (*) und (**) bestimmen u.a. die folgenden Vorgehensweisen.

III. <u>Definitionsbereich</u>: Die Funktion $f(x) = |x| + x - 2 + \frac{2}{|x|}$ ist dort nicht definiert, wo der Nenner

des Bruchs verschwindet, also (s. II.) bei x = 0. Der Definitionsbereich ist daher: $D_f = \mathbb{R} \setminus \{0\}$. An der Definitionslücke können dann (s. V.) Polstellen (senkrechte Asymptoten) oder Funktionslücken auftreten.

IV. <u>Nullstelle</u>: Für die Bestimmung eventueller Nullstellen ist der Zähler des Funktionsterms in (*): $f(x) = \frac{x^2 + |x|(x-2) + 2}{|x|}$ relevant. Der Zählerterm verschwindet, wenn gilt:

$$x^2 + |x|(x-2) + 2 = 0$$

1. Fall: x>0:

1. Fall. X50.

$$x^2 + x(x-2) + 2 = 0 \Leftrightarrow x^2 + x^2 - 2x + 2 = 0 \Leftrightarrow 2x^2 - 2x + 2 = 0 \Leftrightarrow x^2 - x + 1 = 0 \Leftrightarrow x_{1,2} = \frac{1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{1 \pm \sqrt{-3}}{2}$$
 -> keine Lösungen.

2. Fall: x<0:

$$x^{2} + (-x)(x-2) + 2 = 0 \Leftrightarrow x^{2} - x^{2} + 2x + 2 = 0 \Leftrightarrow 2x + 2 = 0 \Leftrightarrow 2x = -2 \Leftrightarrow x = -1.$$

Die einzige Nullstelle von f(x) ist: N(-1|0).

- V. <u>Senkrechte Asymptote/Polstelle</u>: Die einzige Polstelle der Funktion lässt sich aus dem Funktionsterm $f(x) = |x| + x 2 + \frac{2}{|x|}$ erkennen. Denn der Nenners verschwindet, wenn x = 0 ist. Wegen der Beträge in der Funktionsvorschrift liegt gemäß (**)eine Polstelle ohne Vorzeichenwechsel vor.
- VI. <u>Waagerechte, schiefe Asymptote</u>: Für große positive x existiert gemäß (**) eine schiefe Asymptote y, da bei $f(x) = 2x 2 + \frac{2}{x}$ wegen 2/x -> 0 für $x->+\infty$ gilt:

$$x \to +\infty => f(x) \to 2x - 2 = y$$
,

so dass die Gerade y = 2x - 2 eine schiefe Asymptote zu f(x) ist. Weiter gilt für betragsmäßig gro-

ße negative x auf Grund von $f(x) = -2 - \frac{2}{x}$ und $2/x \rightarrow 0$ für $x \rightarrow \infty$:

$$x -> -\infty => f(x) -> -2 = y$$

so dass die Gerade y = -2 eine waagerechte Asymptote zu f(x) ist. Die beiden Asymptoten schneiden sich im Übrigen im Punkt P(0|-2).

VII. <u>Ableitungen</u>: Die ersten drei Ableitungen zu $f(x) = 2x - 2 + \frac{2}{x} = 2x - 2 + 2x^{-1}$, x>0, lauten nach der Potenzregel für das Ableiten:

$$f'(x) = 2 + 2(-1)x^{-2} = 2 - 2x^{-2} = 2 - \frac{2}{x^2}$$

$$f''(x) = -2(-2)x^{-3} = \frac{4}{x^3}$$

$$f'''(x) = 4(-3)x^{-4} = -12x^{-4} = -\frac{12}{x^4}$$

zu
$$f(x) = -2 - \frac{2}{x} = -2 - 2x^{-1}$$
, x<0:

$$f'(x) = -2(-1)x^{-2} = 2x^{-2} = \frac{2}{x^2}$$

$$f''(x) = 2(-2)x^{-3} = -4x^{-3} = -\frac{4}{x^3}$$

$$f'''(x) = -4(-3)x^{-4} = 12x^{-4} = \frac{12}{x^4}$$

VIII. Extrempunkte: Wir setzen die 1. Ableitung gleich Null und erhalten für x>0:

$$f'(x) = 2 - \frac{2}{x^2} = 0 \Leftrightarrow 2x^2 - 2 = 0 \Leftrightarrow 2x^2 = 2 \Leftrightarrow x^2 = 1 \Leftrightarrow x = \pm 1$$

wobei wegen x>0 nur x=1 eine Stelle mit waagerechter Tangente ist. Einsetzen von x=1 in die 2. Ableitung ergibt dann:

$$f''(1) = \frac{4}{1^3} = 4 > 0$$

und damit einen Tiefpunkt von f(x) mit f(1) = 2: T(1|2). Nullsetzen der 1. Ableitung für x<0 führt auf:

$$f'(x) = \frac{2}{x^2} = 0 \iff 2 = 0,$$

also zu keiner Lösung, so dass einzig der Tiefpunkt als Extrempunkt der Funktion erkannt wurde.

IX. <u>Wendepunkte</u>: Auch hier unterscheiden wir die Fälle x>0 und x<0 und haben mit dem Nullsetzen der jeweiligen 2. Ableitung:

x>0:
$$f''(x) = \frac{4}{x^3} = 0 \Leftrightarrow 4 = 0$$

$$x<0: f''(x) = -\frac{4}{x^3} = 0 \Leftrightarrow -4 = 0$$

X. Wertetabelle, Zeichnung:

	f(x)	f'(x)	f"(x)	Besondere Kurvenpunkte
-10	-1.8	0.02	0	2000iluoio itui veiipuilitte
-9.5	-1.7895	0.02	0	
-9	-1.7778	0.02	0.01	
-8.5	-1.7647	0.02	0.01	
-8	-1.75	0.03	0.01	
-7.5	-1.7333	0.03	0.01	
-7.5	-1.7143	0.04	0.01	
-6.5	-1.6923	0.04	0.01	
-6	-1.6667	0.06	0.02	
-5.5	-1.6364	0.00	0.02	
-5	-1.6	0.08	0.03	
-4.5	-1.5556	0.1	0.04	
-4	-1.5	0.13	0.06	
-3.5	-1.4286	0.16	0.09	
-3	-1.3333	0.22	0.15	
-2.5	-1.2	0.32	0.26	
-2	-1	0.5	0.5	
-1.5	-0.6667	0.89	1.19	
-1	0	2	4	Nullstelle N(-1 0)
-0.5	2	8	32	
0	Infinity	1	-Infinity	Senkrechte Asymptote/Pol x = 0
0.5	3	-6	32	
1	2	0	4	Tiefpunkt T(1 2)
1.5	2.3333	1.11	1.19	
2	3	1.5	0.5	
2.5	3.8	1.68	0.26	
3	4.6667	1.78	0.15	
3.5	5.5714	1.84	0.09	
4	6.5	1.87	0.06	
4.5	7.4444	1.9	0.04	
5	8.4	1.92	0.03	
5.5	9.3636	1.93	0.02	
6	10.3333	1.94	0.02	
6.5	11.3077	1.95	0.01	
7	12.2857	1.96	0.01	
7.5	13.2667	1.96	0.01	
8	14.25	1.97	0.01	
8.5	15.2353	1.97	0.01	
9	16.2222	1.98	0.01	
9.5	17.2105	1.98	0.01	
10	18.2	1.98	0	

