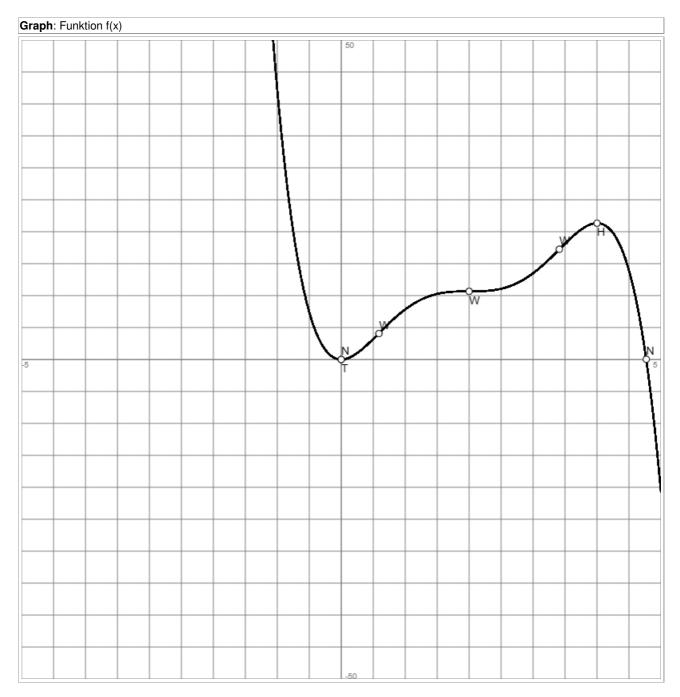
Michael Buhlmann

Mathematikaufgaben

> Analysis

> Kurvendiskussion/Funktionsuntersuchung


Aufgabe: Gegeben ist die Funktion $f(x) = -\frac{1}{2}x^5 + 5x^4 - \frac{50}{3}x^3 + 20x^2$. Charakterisiere den Funktionsverlauf u.a. durch Untersuchung des Verhaltens für betragsmäßig große x, auf Nullstellen, Extrem- und Wendepunkte.

Lösung: Es ergeben sich die besonderen Kurvenpunkte und das Aussehen der Funktion gemäß Wertetabelle, Zeichnung:

	f(x)	f'(x)	f"(x)	Besondere Kurvenpunkte
-5	7270.8333	-5512.5	3290	
-4.5	4896.7031	-4040.16	2616.25	
-4	3178.6667	-2880	2040	
-3.5	1972.5052	-1985.16	1553.75	
-3	1156.5	-1312.5	1150	
-2.5	629.5573	-822.66	821.25	
-2	309.3333	-480	560	
-1.5	130.3594	-252.66	358.75	
-1	42.1667	-112.5	210	
-0.5	7.4115	-35.16	106.25	
0	0	0	40	Nullstelle N(0 0) = Schnittpunkt $S_y(0 0)$ = Tiefpunkt T(0 0)
0.5	3.2135	9.84	3.75	
0.585	4.0591	10	0	Wendepunkt W(0.59 4.06)
1	7.8333	7.5	-10	
1.5	10.2656	2.34	-8.75	
2	10.6667	0	0	Wendepunkt W(2 10.67) = Sattelpunkt S(2 10.67)
2.5	11.0677	2.34	8.75	
3	13.5	7.5	10	
3.414	17.2642	10	0	Wendepunkt W(3.41 17.26)
3.5	18.1198	9.84	-3.75	
4	21.3333	0	-40	Hochpunkt H(4 21.33)
4.5	13.9219	-35.16	-106.25	
4.769	0	-70.3	-156.93	Nullstelle N(4.77 0)
5	-20.8333	-112.5	-210	

Verhalten: $x \rightarrow \infty$: $f(x) \rightarrow +\infty$, $x \rightarrow +\infty$: $f(x) \rightarrow -\infty$

Symmetrie: Punktsymmetrie zum Symmetriezentrum (Sattelpunkt) S(2|32/3)

www.michael-buhlmann.de / 04.2023 / Aufgabe 1834