Michael Buhlmann

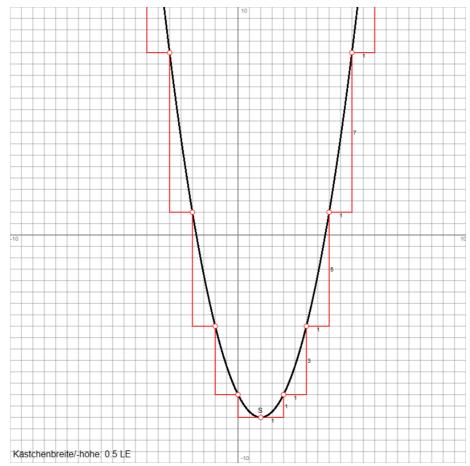
Mathematikaufgaben

> Analysis

> Parabeln

Aufgabe: Skizziere die allgemeinen Parabeln (quadratische Funktionen) in einem geeigneten x-y-Koordinatensystem:

a)
$$f(x) = \frac{1}{4}(x-1)^2 + 3$$
 b) $f(x) = 2x^2 - 7$ c) $f(x) = x^2 - 4x + 2$ d) $f(x) = -\frac{1}{2}x^2 + 3x$ e) $f(x) = -(x-2)(x+3)$


b)
$$f(x) = 2x^2 - 7$$

c)
$$f(x) = x^2 - 4x + 2$$

d)
$$f(x) = -\frac{1}{2}x^2 + 3x$$

e)
$$f(x) = -(x-2)(x+3)$$

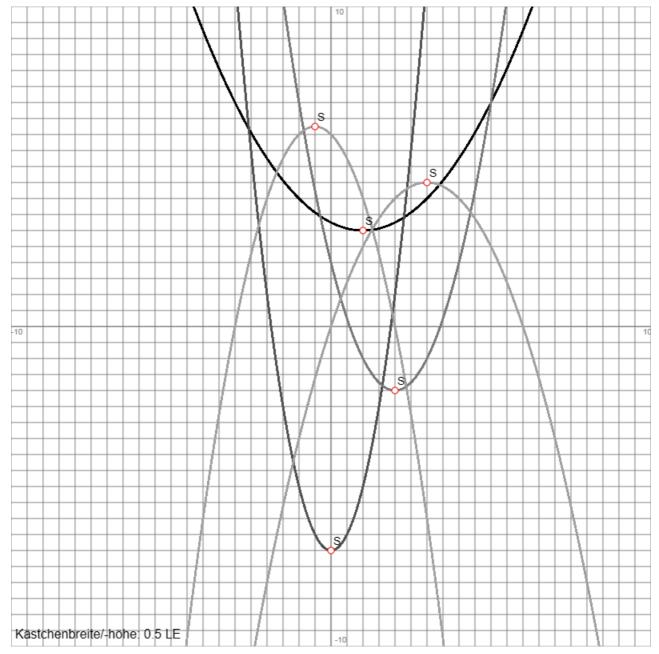
Lösung: I. Ist die quadratische Parabel von der Scheitelform $f(x) = a(x-x_S)^2 + y_S$, so ist der <u>Graph</u> der Funktion y = f(x) in einem geeigneten x-y-Koordinatensystem vom Scheitelpunkt $S(x_S|y_S)$ aus zu skizzieren. In (horizontalen) Einerschritten bestimmen sich dann weitere Parabelpunkte als: $P/Q_1(x_S\pm 1|y_S+1\cdot a) = (x_1|y_1), P/Q_2(x_S\pm 2|y_1+3\cdot a) = (x_2|y_2), P/Q_3(x_S\pm 3|y_2+5\cdot a) = (x_3|y_3),$ $P/Q_4(x_S\pm 4|y_3+7\cdot a)=(x_4|y_4)$ (Berechnung mit Hilfe der ungeraden Zahlen 1, 3, 5, 7, ...) usw.

Auch das Anlegen einer Wertetabelle ist möglich u.a. gemäß:

Х	x _S -3	x _S -2	x _S -1	x_S	x _S +1	x _S +2	x _S +3
y=f(x)	y _s +9a	y_s+4a	y _s +a	V _S	y _s +a	IVc+4a	y _s +9a

II. Der Scheitelpunkt $S(x_S|y_S)$ ist das (relative, lokale) Minimum oder Maximum einer quadratischen Parabel. Er errechnet sich gemäß:

Scheitelform: $f(x) = a(x-x_S)^2 + y_S -> Scheitel S(x_S|y_S)$


Normalform:
$$f(x) = ax^2 + bx + c \rightarrow Scheitel S(x_S|y_S)$$
 mit $x_S = -\frac{b}{2a}$, $y_S = f(-\frac{b}{2a})$

Produktform:
$$f(x) = a(x-x_1)(x-x_2)$$
 -> Scheitel $S(x_S|y_S)$ mit $x_S = \frac{x_1 + x_2}{2}$, $y_S = f(\frac{x_1 + x_2}{2})$.

III. Es ist für eine quadratische Funktion f(x) zunächst der Scheitelpunkt $S(x_S|y_S)$ zu bestimmen und dann der Graph der Funktion vom <u>Scheitelpunkt</u> aus zu zeichnen.

- a) Scheitelform: $f(x) = \frac{1}{4}(x-1)^2 + 3$ -> Scheitel S(1|3) -> Graph der Funktion f(x)
- b) Scheitelform: $f(x) = 2x^2 7$ -> Scheitel S(0|-7) -> Graph der Funktion f(x)
- c) Normalform: $f(x) = x^2 4x + 2$ -> Scheitel S(2|-2) -> Graph der Funktion f(x)
- d) Normalform: $f(x) = -\frac{1}{2}x^2 + 3x$ -> Scheitel S(3|4,5) -> Graph der Funktion f(x)
- e) Produktform: f(x) = -(x-2)(x+3) -> Scheitel S(-0,5|6,25) -> Graph der Funktion f(x)

Als Graphen der Funktionen f(x) ergeben sich damit:

