Michael Buhlmann

Mathematikaufgaben

> Vektorrechnung

> Dreieckpyramide

Aufgabe: Gegeben sind die Punkte A(1|2|-4), B(3|-1|-2), C(-2|-4|1) und S(-1|2|4), die die Ecken einer Dreieckpyramide sind.

- a) Berechne den Oberflächeninhalt der Pyramide.
- b) Berechne den Rauminhalt der Pyramide.

Lösung: a) Wir berechnen alle für das Nachfolgende notwendigen Differenz- und Kreuzproduktvektoren:

$$\vec{AB} = \begin{pmatrix} 3 \\ -1 \\ -2 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix}, \ \vec{AC} = \begin{pmatrix} -2 \\ -4 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix} = \begin{pmatrix} -3 \\ -6 \\ 5 \end{pmatrix} \Rightarrow \vec{AB} \times \vec{AC} = \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix} \times \begin{pmatrix} -3 \\ -6 \\ 5 \end{pmatrix} = \begin{pmatrix} -3 \\ -16 \\ -21 \end{pmatrix}$$

$$\vec{AB} = \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix}, \ \vec{AS} = \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 8 \end{pmatrix} \Rightarrow \vec{AB} \times \vec{AS} = \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix} \times \begin{pmatrix} -2 \\ 0 \\ 8 \end{pmatrix} = \begin{pmatrix} -24 \\ -20 \\ -6 \end{pmatrix}$$

$$\vec{AC} = \begin{pmatrix} -3 \\ -6 \\ 5 \end{pmatrix}, \ \vec{AS} = \begin{pmatrix} -2 \\ 0 \\ 8 \end{pmatrix} \Rightarrow \vec{AC} \times \vec{AS} = \begin{pmatrix} -3 \\ -6 \\ 5 \end{pmatrix} \times \begin{pmatrix} -2 \\ 0 \\ 8 \end{pmatrix} = \begin{pmatrix} -48 \\ 14 \\ -12 \end{pmatrix}$$

$$\vec{AC} = \begin{pmatrix} -2 \\ -4 \\ 1 \end{pmatrix} - \begin{pmatrix} 3 \\ -1 \\ -2 \end{pmatrix} = \begin{pmatrix} -5 \\ -3 \\ 3 \end{pmatrix}, \ \vec{AS} = \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix} - \begin{pmatrix} 3 \\ -1 \\ -2 \end{pmatrix} = \begin{pmatrix} -4 \\ 3 \\ 6 \end{pmatrix} \Rightarrow \vec{AC} \times \vec{AS} = \begin{pmatrix} -5 \\ -3 \\ 3 \end{pmatrix} \times \begin{pmatrix} -4 \\ 3 \\ 6 \end{pmatrix} = \begin{pmatrix} -27 \\ 18 \\ -27 \end{pmatrix}$$

Die <u>Oberfläche</u> der Rechteckpyramide ABCDS besteht aus der Dreieckgrundfläche und der Mantelfläche, die Mantelfläche aus den drei Mantelflächendreiecken M₁, M₂, M₃. Da Dreiecke als halbe Parallelogramme verstanden werden können, ergibt sich ihr Flächeninhalt als halber Flächeninhalt des zum Dreieck gehörenden Parallelogramms. Es folgt also mit Hilfe des Kreuzprodukts:

$$G = \frac{1}{2} \begin{vmatrix} -3 \\ AB \times AC \end{vmatrix} = \frac{1}{2} \begin{vmatrix} -3 \\ -16 \\ -21 \end{vmatrix} \approx 13,285 \text{ FE}$$

$$M_1 = \frac{1}{2} \begin{vmatrix} -5 & -5 \\ AB \times AS \end{vmatrix} = \frac{1}{2} \begin{vmatrix} -24 \\ -20 \\ -6 \end{vmatrix} \approx 15,906 \text{ FE}$$

$$M_2 = \frac{1}{2} \begin{vmatrix} \vec{A} - \vec{A} \times \vec{A} - \vec{A} \\ \vec{A} - \vec{A} - \vec{A} - \vec{A} \\ \vec{A} - \vec{A} - \vec{A} - \vec{A} \\ \vec{A} - \vec{A} - \vec{A} - \vec{A} - \vec{A} \\ \vec{A} - \vec{A}$$

$$M_3 = \frac{1}{2} \begin{vmatrix} -27 \\ BC \times BS \end{vmatrix} = \frac{1}{2} \begin{vmatrix} -27 \\ 18 \\ -27 \end{vmatrix} \approx 21,107 \text{ FE}.$$

Die Pyramidenmantelfläche M und die -oberflache O errechnen sich als:

$$M = M_1 + M_2 + M_3 = 15,906 + 25,71 + 21,107 = 62,723 FE$$

 $O = G + M = 13,285 + 62,723 = 76,008 FE.$

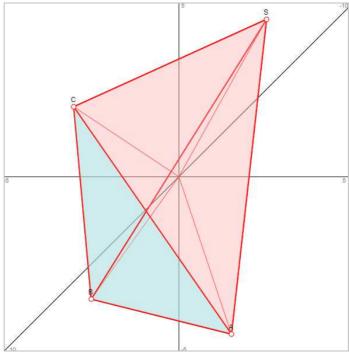
b) Das <u>Volumen</u> V der Dreieckpyramide mit Grundfläche ABC und Spitze S errechnet sich gemäß dem Spatprodukt als:

$$V = \frac{1}{6} \left| \begin{pmatrix} -3 \\ AB \times AC \end{pmatrix} \cdot AS \right| = \frac{1}{6} \left| \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix} \times \begin{pmatrix} -3 \\ -6 \\ 5 \end{pmatrix} \right| \cdot \begin{pmatrix} -2 \\ 0 \\ 8 \end{pmatrix} = \frac{1}{6} \left| \begin{pmatrix} -3 \\ -16 \\ -21 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 0 \\ 8 \end{pmatrix} = \frac{1}{6} \left| 6 + 0 - 168 \right| = \frac{162}{6} = 27 \text{ VE}.$$

(FE = Flächeneinheit, LE = Längeneinheit, VE = Volumeneinheit)

(http://www.michael-buhlmann.de/Mathematik/ math_vektor55b.htm:)

Punkt: A(a ₁ a ₂ a ₃)	A(1 2 1	-4
Punkt: B(b ₁ b ₂ b ₃)	B(3 -1	-2
Punkt: C(c ₁ c ₂ c ₃)	C(-2 -4	1)
Punkt: S(s ₁ s ₂ s ₃)	S(-1 2	4
Bereich:	x ₂ -, x ₃ -Wert: +/- 5	(-> x ₁ -Wert)
Ortsvektoren/ABCS:	✓ (ja)	
Grundfläche/ΔABC: G =	13.285	
	G = AB ^{->} x A	B ^{->} /2
Höhe/Pyramide: h =	6.097	
	h = d(S, G)	3)
Volumen/Pyramide: V =	27	
	$V = G*h/3 = (AB^{-}) \times A$	AC ^{->}) * AS ^{->} /6
Mantelfläche/ Δ ABS: M ₁ =	15.906	
	$M_1 = AB^{-} \times M_1$	\S ^{->} /2
Mantelfläche/ΔACS: M ₂ =	25.71	
	$M_2 = AC^{-} \times M_2$	\S ^{->} /2
Mantelfläche/ Δ BCS: M ₃ =	21.107	
	$M_3 = BC^{->} \times E$	BS ^{->} /2
Mantelfläche/Pyramide: M =	62.723	
	$M = M_1 + M_2 + M_3$	
Oberfläche/Pyramide: O =	76.008	
	O = G + M	



www.michael-buhlmann.de / 10.2020 / Aufgabe 1142