Michael Buhlmann

Mathematikaufgaben

> Algebra

> Quadratische Gleichungen

Aufgabe: Bestimme die Lösung der quadratischen Gleichung:

$$2x^2 + 5x - 7 = 0$$
.

Lösung: I. Allgemein gilt für das Lösen von quadratischen Gleichungen, also von Gleichungen z.B. mit der Variablen x, die folgende <u>Vorgehensweise</u>: Quadratische Gleichungen sind Gleichungen mit der Variablen x, die der Form $ax^2 + bx + c = 0$ (*) mit reellen Zahlen a, b, c, $a\neq 0$, genügen. Die

Lösung der quadratischen Gleichung (*) ist dann: $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ (a-b-c-Formel). Um die

Lösung einer quadratischen Gleichung der Form (*) zu erlangen, sind Term- und Gleichungsumformungen durchzuführen, die die Terme der Gleichung u.a. durch das Auflösen von Klammern, durch Addition/Subtraktion von Summanden und Multiplikation/Division von Faktoren betreffen; die a-b-c-Formel führt auf die 0 bis 2 Lösungen der Gleichung.

II. Wir gehen mittels Gleichungsumformungen wie folgt vor:

$$2x^{2} + 5x - 7 = 0$$
 (a-b-c-Formel: a = 2, b = 5, c = -7)
$$x_{1,2} = \frac{-5 \pm \sqrt{5^{2} - 4 \cdot 2 \cdot (-7)}}{2 \cdot 2}$$
 (Ausrechnen)
$$x_{1,2} = \frac{-5 \pm \sqrt{81}}{4}$$
 (Wurzel ziehen)
$$x_{1,2} = \frac{-5 \pm 9}{4}$$
 (Lösungen x_{1}, x_{2})
$$x_{1} = \frac{-5 + 9}{4} = \frac{4}{4} = 1, x_{2} = \frac{-5 - 9}{4} = \frac{-14}{4} = -\frac{7}{2} = -3,5$$

$$x_{1} = 1, x_{2} = -3,5$$

Wir erhalten $x_1 = 1$ und $x_2 = -3.5$ als Lösungen; Lösungsmenge ist also: $L = \{-3.5, 1\}$.

www.michael-buhlmann.de / 12.2019 / Aufgabe 902