Michael Buhlmann

Mathematikaufgaben

> Arithmetik

> Quadratwurzeln

Aufgabe: Bestimme eine Näherung zu der irrationalen Wurzel √10 mit Hilfe des Intervallhalbierungsverfahrens (Intervallschachtelung).

Lösung: I. <u>Vorgehensweise</u>: Jede irrationale Wurzel \sqrt{w} aus einer natürlichen Zahl w findet sich in einem Intervall [a; b] mit $a^2 < w < b^2$ und den Quadratzahlen a^2 , b^2 . Das Verfahren der Intervallhalbierung (Intervallhalbierungsverfahren) unterteilt dieses Intervall vermöge der Intervallmitte m = (a+b)/2 in eine linke Intervallhälfte [a; m] und eine rechte Intervallhälfte [m; b]. Ist dann $m^2 < w$, so liegt \sqrt{w} in der rechten Intervallhälfte [m; b]; ist $m^2 > w$, so liegt \sqrt{w} in der linken Intervallhälfte [a; m]. Das Verfahren der Intervallhalbierung kann dann für die Intervallhälfte [a; m] bzw. [m; b] wiederholt werden, in der \sqrt{w} liegt. Man erhält eine Folge von ineinander geschachtelten Intervallen (Intervallschachtelung), die auf den Dezimalwert von \sqrt{w} führt. - Intervall als reelle Zahlenmenge [a; b] = $\{x \in \mathbb{R} | a \le x \le b\}$, a < b; $e = \mathbb{E}$ Element von'; Wurzel \sqrt{w} als Zahl, die mit sich selbst multipliziert w ergibt, also mit $(\sqrt{w})^2 = w$. Im Folgenden ist w = 10.

II. Wegen 9 < 10 < 16 und damit $3 < \sqrt{10} < 4$ ergibt sich folgende <u>Tabelle</u> bei 20-maliger Durchführung des Intervallhalbierungsverfahrens:

Schritt	Linkes Intervall	Rechtes Intervall	Intervallmitte, Intervallauswahl (Intervallmitte -> Intervallmitte zum Quadrat -> [Größer-, Kleiner-] Vergleich mit 10 -> [linke, rechte] Intervallmälfte)
1	√10∈[3; 4]		$3.5 -> 3.5^2 = 12.25 > 10 -> linke Intervallhälfte [3; 3.5]$
1	√10∈[3; 3.5]	[3.5; 4]	3.25 -> 3.25 ² = 10.5625 > 10 -> linke Intervallhälfte [3; 3.25]
2	√10∈[3; 3.25]	[3.25; 3.5]	3.125 -> 3.125 ² = 9.765625 < 10 -> rechte Intervallhälfte [3.125; 3.25]
3	[3; 3.125]	√10∈[3.125; 3.25]	3.1875 -> 3.1875 ² = 10.16015625 > 10 -> linke Intervallhälfte [3.125; 3.1875]
4	√10∈[3.125; 3.1875]	[3.1875; 3.25]	3.15625 -> 3.15625 ² = 9.9619140625 < 10 -> rechte Intervallhälfte [3.15625; 3.1875]
5	[3.125; 3.15625]	√10∈[3.15625; 3.1875]	3.171875 -> 3.171875 ² = 10.060791015625 > 10 -> linke Intervallhälfte [3.15625; 3.171875]
6	√10∈[3.15625; 3.171875]	[3.171875; 3.1875]	3.1640625 -> 3.1640625 ² = 10.01129150390625 > 10 -> linke Intervallhälfte [3.15625; 3.1640625]
7	√10∈[3.15625; 3.1640625]	[3.1640625; 3.171875]	3.16015625 -> 3.16015625 ² = 9.986587524414062 < 10 -> rechte Intervallhälfte [3.16015625; 3.1640625]
8	[3.15625; 3.16015625]	√10∈[3.16015625; 3.1640625]	3.162109375 -> 3.162109375 ² = 9.99893569946289 < 10 -> rechte Intervallhälfte [3.162109375; 3.1640625]

9	[3.16015625; 3.162109375]	√10∈[3.162109375; 3.1640625]	3.1630859375 -> 3.1630859375 ² = 10.005112648010254 > 10 -> linke Intervallhälfte [3.162109375; 3.1630859375]
10	√10∈[3.162109375; 3.1630859375]	[3.1630859375; 3.1640625]	3.16259765625 -> 3.16259765625 ² = 10.002023935317993 > 10 -> linke Intervallhälfte [3.162109375; 3.16259765625]
11	√10∈[3.162109375; 3.16259765625]	[3.16259765625; 3.1630859375]	3.162353515625 -> 3.162353515625 ² = 10.000479757785797 > 10 -> linke Intervallhälfte [3.162109375; 3.162353515625]
12	√10∈[3.162109375; 3.162353515625]	[3.162353515625; 3.16259765625]	3.1622314453125 -> 3.1622314453125 ² = 9.999707713723182 < 10 -> rechte Intervallhälfte [3.1622314453125; 3.162353515625]
13	[3.162109375; 3.1622314453125]	√10∈[3.1622314453125; 3.162353515625]	3.16229248046875 -> 3.16229248046875 ² = 10.0000937320292 > 10 -> linke Intervallhälfte [3.1622314453125; 3.16229248046875]
14	√10∈[3.1622314453125; 3.16229248046875]	[3.16229248046875; 3.162353515625]	3.162261962890625 -> 3.162261962890625 ² = 9.999900721944868 < 10 -> rechte Intervallhälfte [3.162261962890625; 3.16229248046875]
15	[3.1622314453125; 3.162261962890625]	√10∈[3.162261962890625; 3.16229248046875]	3.1622772216796875 -> 3.1622772216796875 ² = 9.999997226754203 < 10 -> rechte Intervallhälfte [3.1622772216796875; 3.16229248046875]
16	[3.162261962890625; 3.1622772216796875]	√10∈[3.1622772216796875; 3.16229248046875]	3.1622848510742187 -> 3.1622848510742187 ² = 10.000045479333493 > 10 -> linke Intervallhälfte [3.1622772216796875; 3.1622848510742187]
17	√10∈[3.1622772216796875; 3.1622848510742187]	[3.1622848510742187; 3.16229248046875]	3.162281036376953 -> 3.162281036376953 ² = 10.000021353029296 > 10 -> linke Intervallhälfte [3.1622772216796875; 3.162281036376953]
18	√10∈[3.1622772216796875; 3.162281036376953]	[3.162281036376953; 3.1622848510742187]	3.1622791290283203 -> 3.1622791290283203 ² = 10.000009289888112 > 10 -> linke Intervallhälfte [3.1622772216796875; 3.1622791290283203]
19	√10∈[3.1622772216796875; 3.1622791290283203]	[3.1622791290283203; 3.162281036376953]	3.162278175354004 -> 3.162278175354004 ² = 10.000003258320248 > 10 -> linke Intervallhälfte [3.1622772216796875; 3.162278175354004]
20	√10∈[3.1622772216796875; 3.162278175354004]	[3.162278175354004; 3.1622791290283203]	3.1622776985168457 -> 3.1622776985168457 ² = 10.000000242536998 > 10 -> linke Intervallhälfte [3.1622772216796875; 3.1622776985168457]

Als Näherung zur Wurzel $\sqrt{10}$ kann laut Schritt 20 des Intervallhalbierungsverfahrens (gleiche Stellen vor und hinter dem Komma bei der linken und rechten Grenze der Intervallhälfte) die Dezimalzahl 3.16227... gelten. Zum Vergleich: $\sqrt{10} = 3.1622776601683795$.

www.michael-buhlmann.de / 11.2015 / Aufgabe 143