Michael Buhlmann

Mathematikaufgaben

> Statistik/Stochastik

> Binomialverteilung

Aufgabe: Auf einem Glücksrad sind zehn Segmente mit jeweils gleichem Innenwinkel 36° angeordnet. Die Segmente stehen für T wie "Treffer" und N wie "Nichttreffer". Das Glücksrad wird mehrfach gedreht, es kommt auf einem Feld mit T als "Treffer" und N als "Nichttreffer" zu stehen, die Anzahl der Treffer wird ermittelt.

a) Am Glücksrad sind drei Segmente mit T als "Treffer" markiert. Das Glücksrad wird zehn Mal gedreht. Begründe, dass ein Bernoulli-Experiment vorliegt und definiere die binomialverteilte Zufallsgröße X. Berechne die Wahrscheinlichkeiten der nachstehenden Ereignisse:

A: Das Glücksrad kommt genau drei Mal auf einem Feld mit T als "Treffer" zu stehen.

B: Die ermittelte Trefferanzahl beträgt höchstens 6.

C: Die Trefferanzahl ist größer als 5.

D: Die ermittelte Trefferanzahl schwankt zwischen 4 und 7.

E: Die Trefferanzahl ist nicht 8.

F: Das Glücksrad kommt mindestens einmal auf einem Feld mit T als "Treffer" zu stehen.

- b) Am Glücksrad sind drei Segmente mit T als "Treffer" markiert. Wie oft muss das Glücksrad gedreht werden, damit die Wahrscheinlichkeit, mindestens einen Treffer zu erhalten, mindestens 99 Prozent groß ist?
- c) Das Glücksrad wird nun 50 Mal gedreht. Wie viele Segmente müssen mit T für "Treffer" markiert werden, damit die Wahrscheinlichkeit, höchstens 20 Treffer zu erhalten, unter 1 Prozent sinkt?
- **1. Lösung**: a) I. Ein <u>Bernoulli-Experiment</u> ist ein Zufallsexperiment mit zwei Ausgängen (T = Treffer, N = Nichttreffer), der Grundwahrscheinlichkeit p als Trefferwahrscheinlichkeit, der Anzahl n der Experimentwiederholung "mit Zurücklegen". Die Zufallsvariable X gibt die Anzahl der Treffer bei nmaliger Wiederholung des Experiments an. Sie ist B(n; p)-binomialverteilt für die mit den Parametern n (Anzahl der Versuchswiederholungen) und p (Trefferwahrscheinlichkeit) und genügt der Bernoulliformel:

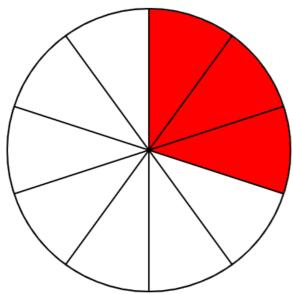
$$p(X = k) = {n \choose k} p^k (1-p)^{n-k}, k = 0, 1, ...n.$$

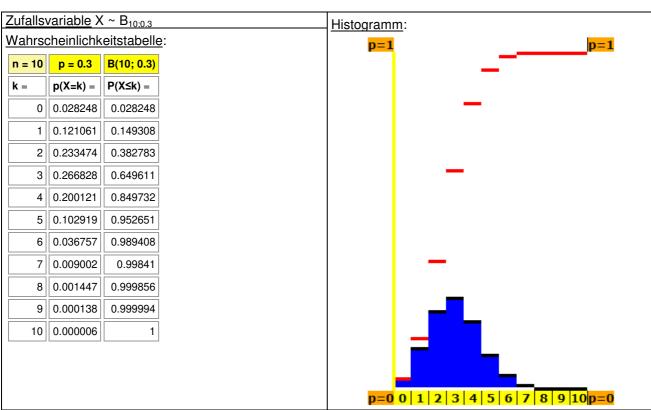
Zusammenhang mit der Bernoulliformel ergeben sich:

$$\begin{split} p(X=0) &= (1-p)^n \\ p(X=n) &= p^n \\ p(X\le k) &= p(X=0) + p(X=1) + \ldots + p(X=k) = 1 - p(X>k) \\ p(X< k) &= p(X\le k-1) = 1 - p(X\ge k) \\ p(X\ge k) &= 1 - p(X\le k-1) \\ p(X>k) &= p(X\ge k+1) = 1 - p(X\le k-1) \\ p(X>k) &= p(X\ge k+1) = 1 - p(X\le k) \\ p(k_1\le X\le k_2) &= p(X=k_1) + \ldots + p(X=k_2) = p(X\le k_2) - p(X\le k_1-1) \\ p(k_1< X\le k_2) &= p(X=k_1) + \ldots + p(X=k_2) = p(X\le k_2) - p(X\le k_1-1) \\ p(k_1\le X< k_2) &= p(X=k_1) + \ldots + p(X=k_2-1) = p(X\le k_2-1) - p(X\le k_1-1) \\ p(k_1< X< k_2) &= p(X=k_1+1) + \ldots + p(X=k_2-1) = p(X\le k_2-1) - p(X\le k_1-1) \\ \end{split}$$

II. Gemäß Aufgabenstellung ist n = 10 und p = 3/10 = 0.3, so dass die Zufallsgröße X, die die Anzahl der Treffer beim Experiment mit dem Glücksrad zählt, binomialverteilt mit den Parametern n = 10 und p = 0.3 ist:

Glücksrad (T-Segmente rot):





III. Mit Hilfe der Bernoulliformel errechnen sich die Wahrscheinlichkeiten als:

```
\begin{array}{l} p(A) = p(X=3) = 0.028248 \\ p(B) = p(X \le 6) = 0.989408 \\ p(C) = p(X > 5) = 1 - p(X \le 4) = 1 - 0.849732 = 0.150268 \\ p(D) = p(4 \le X \le 7) = p(X \le 7) - p(X \le 3) = 0.99841 - 0.649611 = 0.348799 \\ p(E) = p(X \ne 8) = 1 - p(X = 8) = 1 - 0.001447 = 0.998553 \\ p(F) = p(X \ge 1) = 1 - p(X \le 0) = 1 - p(X = 0) = 1 - 0.028248 = 0.971752. \end{array}
```

b) Die Zufallsgröße X, die die Anzahl der Treffer beim Experiment mit dem Glücksrad zählt, ist binomialverteilt mit den Parametern n und p=0,3, wobei n als <u>Anzahl der Versuchsdurchführungen</u> zu bestimmen ist auf der Grundlage von:

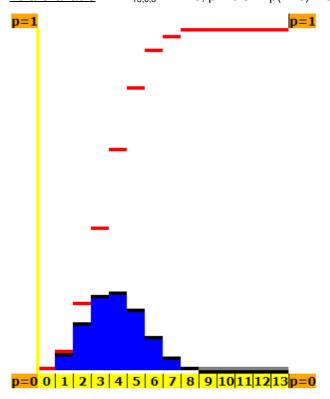
$$p(X \ge 1) \ge 0.99 \Leftrightarrow 1 - p(X = 0) \ge 0.99 \Leftrightarrow -p(X = 0) \ge -0.01 \Leftrightarrow p(X = 0) \le 0.01.$$

Wir gleichen die <u>Anzahl der Versuchsdurchführungen</u> n mit den dazugehörenden Wahrscheinlichkeiten p(X=0) ab und erhalten die tabellarische Übersicht:

n =	p(X=0) =
0	1
1	0.7
2	0.49
3	0.343
4	0.2401
5	0.16807
6	0.117649
7	0.082354
8	0.057648
9	0.040354
10	0.028248
11	0.019773
12	0.013841
13	0.009689
14	0.006782
15	0.004748
16	0.003323
17	0.002326
18	0.001628
19	0.00114
20	0.000798

Wir erhalten: $n \ge 13$. Das Glücksrad muss mindestens 13 Mal gedreht werden, damit die Wahrscheinlichkeit, mindestens einen Treffer zu erhalten, mindestens 99 Prozent groß ist.

<u>Zufallsvariable</u> $X \sim B_{13;0,3}$: n = 13, p = 0.3 -> p(X=0) = 0.0096889

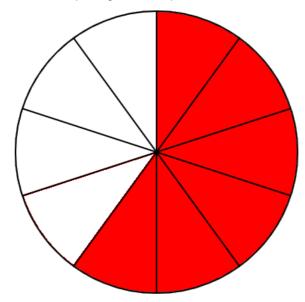


c) Die Zufallsgröße X, die die Anzahl der Treffer beim Experiment mit dem Glücksrad zählt, ist binomialverteilt mit den Parametern n=50 und p, wobei p als <u>Trefferwahrscheinlichkeit</u> wegen des Glücksrads mit 10 Segmenten nur die Wahrscheinlichkeiten p=0, =1/10=0,1, =2/10=0,2, ... = 9/10=0,9 oder = 1 annehmen kann. Wir gleichen die Trefferwahrscheinlichkeiten p mit den dazugehörenden Wahrscheinlichkeiten p(X \leq 20) ab und erhalten die tabellarische Übersicht:

p =	p(X≤20) =
0	1
0.1	1
0.2	0.999679
0.3	0.952236
0.4	0.561035
0.5	0.101319
0.6	0.00336
0.7	0.000011
0.8	0
0.9	0
1	0

Wir haben damit: p = 0.6, d.h. sechs Segmenten des Glücksrads wird die Bezeichnung T für "Treffer" zugeordnet.

Glücksrad (T-Segmente rot):



2. Lösung: a) I. Ein <u>Bernoulli-Experiment</u> ist ein Zufallsexperiment mit zwei Ausgängen (T = Treffer, N = Nichttreffer), der Grundwahrscheinlichkeit p als Trefferwahrscheinlichkeit, der Anzahl n der Experimentwiederholung "mit Zurücklegen". Die Zufallsvariable X gibt die Anzahl der Treffer bei nmaliger Wiederholung des Experiments an. Sie ist B(n; p)-binomialverteilt für die mit den Parametern n (Anzahl der Versuchswiederholungen) und p (Trefferwahrscheinlichkeit) und genügt der Bernoulliformel:

$$p(X = k) = {n \choose k} p^k (1-p)^{n-k}, k = 0, 1, ...n.$$

$$\min \binom{n}{k} = \frac{n(n-1)(n-2) \cdot \ldots \cdot (n-k+1)}{1 \cdot 2 \cdot \ldots \cdot k} = \frac{n!}{k!(n-k)!} \text{ als Binomialkoeffizienten. Als Rechenregeln im }$$

Zusammenhang mit der Bernoulliformel ergeben sich:

$$\begin{split} p(X=0) &= (1-p)^n \\ p(X=n) &= p^n \\ p(X \le k) &= p(X=0) + p(X=1) + \ldots + p(X=k) = 1 - p(X > k) \\ p(X < k) &= p(X \le k-1) = 1 - p(X \ge k) \\ p(X \ge k) &= 1 - p(X \le k-1) \\ p(X > k) &= p(X \ge k+1) = 1 - p(X \le k) \\ p(k_1 \le X \le k_2) &= p(X = k_1) + \ldots + p(X = k_2) = p(X \le k_2) - p(X \le k_1 - 1) \\ p(k_1 < X \le k_2) &= p(X = k_1 + 1) + \ldots + p(X = k_2) = p(X \le k_2) - p(X \le k_1 - 1) \\ p(k_1 < X < k_2) &= p(X = k_1) + \ldots + p(X = k_2 - 1) = p(X \le k_2 - 1) - p(X \le k_1 - 1) \\ p(k_1 < X < k_2) &= p(X = k_1 + 1) + \ldots + p(X = k_2 - 1) = p(X \le k_2 - 1) - p(X \le k_1). \end{split}$$

II. Gemäß Aufgabenstellung ist n=10 und p=3/10=0.3, so dass die Zufallsgröße X, die die Anzahl der Treffer beim Experiment mit dem Glücksrad zählt, binomialverteilt mit den Parametern n=10 und p=0.3 ist:

Wahrscheinlichkeitstabelle:

n = 10	p = 0.3	B(10; 0.3)
k =	p(X=k) =	P(X≤k) =
0	0.028248	0.028248
1	0.121061	0.149308
2	0.233474	0.382783
3	0.266828	0.649611
4	0.200121	0.849732
5	0.102919	0.952651
6	0.036757	0.989408
7	0.009002	0.99841
8	0.001447	0.999856
9	0.000138	0.999994
10	0.000006	1

III. Mit Hilfe der Bernoulliformel errechnen sich die Wahrscheinlichkeiten als:

$$\begin{array}{l} p(A) = p(X=3) = 0.028248 \\ p(B) = p(X \le 6) = 0.989408 \\ p(C) = p(X > 5) = 1 - p(X \le 4) = 1 - 0.849732 = 0.150268 \\ p(D) = p(4 \le X \le 7) = p(X \le 7) - p(X \le 3) = 0.99841 - 0.649611 = 0.348799 \\ p(E) = p(X \ne 8) = 1 - p(X = 8) = 1 - 0.001447 = 0.998553 \\ p(F) = p(X \ge 1) = 1 - p(X \le 0) = 1 - p(X = 0) = 1 - 0.028248 = 0.971752. \end{array}$$

b) Die Zufallsgröße X, die die Anzahl der Treffer beim Experiment mit dem Glücksrad zählt, ist binomialverteilt mit den Parametern n und p = 0,3, wobei n als <u>Anzahl der Versuchsdurchführungen</u> zu bestimmen ist auf der Grundlage von:

$$p(X \ge 1) \ge 0.99 \Leftrightarrow 1 - p(X = 0) \ge 0.99 \Leftrightarrow -p(X = 0) \ge -0.01 \Leftrightarrow p(X = 0) \le 0.01.$$

Da $p(X=0) = (1-p)^n$ mit Trefferwahrscheinlichkeit p ist, ist also mit $p = 0.3 \Rightarrow 1-p = 0.7$ die Unglei-

chung $0.7^n \le 0.01$ nach n auszurechnen. Es gilt:

 $0.7^{n} \le 0.01 \Rightarrow n \ge \ln(0.01)/\ln(0.7) = 12.91$

also: $n \ge 13$. Das Glücksrad muss mindestens 13 Mal gedreht werden, damit die Wahrscheinlichkeit, mindestens einen Treffer zu erhalten, mindestens 99 % groß ist.

c) Die Zufallsgröße X, die die Anzahl der Treffer beim Experiment mit dem Glücksrad zählt, ist binomialverteilt mit den Parametern n=50 und p, wobei p als <u>Trefferwahrscheinlichkeit</u> wegen des Glücksrads mit 10 Segmenten nur die Wahrscheinlichkeiten p=0,=1/10=0,1,=2/10=0,2,...=9/10=0,9 oder = 1 annehmen kann. Wir gleichen die Trefferwahrscheinlichkeiten p mit den dazugehörenden Wahrscheinlichkeiten p(X \leq 20) ab und erhalten die tabellarische Übersicht:

p =	p(X≤20) =
0	1
0.1	1
0.2	0.999679
0.3	0.952236
0.4	0.561035
0.5	0.101319
0.6	0.00336
0.7	0.000011
0.8	0
0.9	0
1	0

Wir haben damit: p = 0.6, d.h. sechs Segmenten des Glücksrads wird die Bezeichnung T für "Treffer" zugeordnet.

www.michael-buhlmann.de / 05.2021 / Aufgabe 1415