Michael Buhlmann

Mathematik-Aufgabenpool > Grundaufgaben zur Analysis I

Einleitung: Die <u>Analysis</u> ist die Lehre von den <u>reellen Funktionen</u> und kreist daher um <u>Gleichungen</u>, die <u>Differential- und Integralrechnung</u>, <u>Funktionsuntersuchungen</u>, <u>Bestimmungsaufgaben</u> sowie <u>grafisches Ab- und Aufleiten</u>.

Funktionen

<u>Funktionen</u> sind Abbildungen f: $D_f ext{-} > R$ von reellen Zahlen in reelle Zahlen, d.h.: sie ordnen vermöge einer Zuordnung $x ext{-} > f(x) = y$ (<u>Funktionsterm</u>) jedem reellen x des (maximalen) <u>Definitionsbereichs</u> D_f genau ein reelles y des <u>Wertebereichs</u> W_f zu. Funktionen können vervielfacht, addiert, subtrahiert, multipliziert, dividiert, potenziert, verknüpft werden, d.h. es gilt: $r ext{-} f(x)$, f(x) + g(x), f(x) - g(x), $f(x) \cdot g(x)$, f(x) / g(x), f(x) / g(x) und g(f(x)) sind reguläre Funktionsterme. Funktionen erscheinen in der Analysis als ganz und gebrochen rationale Funktionen, Exponential- und trigonometrische Funktionen.

Gleichungen

$ax^2 + bx + c = 0$			
$a \neq 0, b = 0$	$a \neq 0, c = 0$	$a \neq 0, b \neq 0, c \neq 0$	a = 1, b = p, c = q
$ax^2 + c = 0$	$ax^2 + bx = 0$		
$ax^2 = -c$	x(ax+b)=0	$ax^2 + bx + c = 0$	$x^2 + px + q = 0$
$x^2 = -\frac{c}{}$	$x = 0 \lor ax + b = 0$	$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$p \cdot \left(p \right)^2$
$\frac{a}{\Box}$	$x = 0 \lor ax = -b$	$x_{1,2} = {2a}$	$x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$
$x = \pm \sqrt{-\frac{c}{a}}$	$x = 0 \lor x = -\frac{b}{a}$		
Rein quadratische Glei- chung:	Gemischt quadratische Gleichung (Ausklammern):	Gemischt quadratische Gleichung (Mitternachtsformel):	Gemischt quadratische Glei- chung (p-q-Formel):
0 Lösungen (bei $\frac{c}{a}$ <0),	2 Lösungen	$D = b^2 - 4ac$ als Diskriminante -> 0 Lösungen (bei D<0)	$D = \left(\frac{p}{2}\right)^2 - q \text{ als Diskriminante}$
1 Lösung (bei c=0),		1 Lösung (bei D=0) 2 Lösungen (bei D>0)	-> 0 Lösungen (bei D<0)
2 Lösungen (bei $\frac{c}{a}$ >0)		3. (11. 1)	1 Lösung (bei D=0) 2 Lösungen (bei D>0)
	Quadratische Gleichung hat die Form:	Quadratische Gleichung hat die Form:	Quadratische Gleichung hat die Form:
	$ax(x-x_1)=0$	$a(x-x_1)^2=0$	$(x-x_1)^2=0$
	(bei 2 Lösungen $x = 0$,	(bei 1 Lösung $x = x_1$),	(bei 1 Lösung $x = x_1$),
	$x = x_1 = -\frac{b}{a}$	$a(x - x_1)(x - x_2) = 0$	$(x-x_1)(x-x_2)=0$
	u	(bei 2 Lsg. $x = x_1, x = x_2$)	(bei 2 Lsg. $x = x_1, x = x_2$)

Quadratische Gleichungen

$a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0 = 0$		
Ausklammern (und Satz vom Nullprodukt):		
$ax^{n}++bx^{m} = 0 \Leftrightarrow x^{m}(ax^{n-m}++b) = 0 \Leftrightarrow x=0, ax^{n-m}++b = 0$		
Substitution:		
$ax^4 + bx^2 + c = 0$ Substitution: $z=x^2$		
$az^2 + bz + c = 0$		
$z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ (Rücksubstitution)		
$x^2 = z_1, x^2 = z_2 \qquad \sqrt{}$		
$x = \pm \sqrt{z_1}, x = \pm \sqrt{z_2}$ (falls $z_1, z_2 > 0$)		

Polynomgleichungen

Einfache Exponentialgleichungen:		
$ae^{bx+c} = d \Leftrightarrow x = \frac{\ln\left(\frac{d}{a}\right) - c}{b}$		
Quadratische Exponentialgleichungen: $ae^{2x} + be^{x} + c = 0 \qquad Substitution: z=e^{x}$		
$ae^{2x} + be^{x} + c = 0$ Substitution: $z=e^{x}$		
$az^2 + bz + c = 0$		
$z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ (Rücksubstitution)		
$e^{x} = z_{1}, e^{x} = z_{2}$ In()		
$x = ln(z_1), x = ln(z_2)$ (falls $z_1, z_2 > 0$)	•	

Exponentialgleichungen

Einfache trigonometrische Gleichungen:		
$\sin(bx) = r$	$\cos(bx) = r$	
$r = -1$: $x=3\pi/2b$ usw.	$r = -1$: $x = \pi/b$ usw.	
$r = 0$: $x=0$, $x=\pi/b$, $x=2\pi/b$ usw.	$r = 0$: $x=\pi/2b$, $x=3\pi/2b$ usw.	
$r = 1: x = \pi/2b$ usw.	$r = 1: x=0, x=2\pi/b \text{ usw.}$	
	$b \neq 0, 0 \le x \le 2\pi$	
Quadratische trigonometrische Gleichungen:		
$asin^2x + bsinx + c = 0$ Substitution: z=sinx	$a\cos^2 x + b\cos x + c = 0$ Substitution: z=cosx	
$az^2 + k$	DZ+C=0	
$z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	(Rücksubstitution)	
$\sin x = z_1$, $\sin x = z_2$	$COSX = Z_1$, $COSX = Z_2$	
	0 ≤ x ≤ 2π	

Trigonometrische Gleichungen

Aufgabe 1: Bestimme die Lösungen der folgenden Gleichung:

$$x^3 + x^2 - 6x = 0.$$

Vorgehensweise: Ausklammern -> Satz vom Nullprodukt -> quadratische Gleichung.

Lösung: $x_1 = -3$, $x_2 = 0$, $x_3 = 2$.

Aufgabe 2: Löse die Gleichung:

$$x^4 + 5x^2 - 36 = 0$$
.

Vorgehensweise: Substitution $z=x^2$ -> quadratische Gleichung -> Rücksubstitution $x^2=z$ -> Wurzelziehen.

Lösung: $x_1 = -2$, $x_2 = 2$.

Aufgabe 3: Bestimme die Lösungen der folgenden Gleichung:

$$x^4 = x^2 + 72$$
.

Vorgehensweise: Substitution $z=x^2$ -> quadratische Gleichung -> Rücksubstitution $x^2=z$ -> Wurzelziehen.

Lösung: $x_1 = -3$, $x_2 = 3$.

Aufgabe 4: Bestimme die Lösungen der folgenden Gleichung:

$$(x^3+4x^2)(4e^{2x}-9)=0.$$

Vorgehensweise: Satz vom Nullprodukt -> kubische Gleichung (lösbar mit Ausklammern und Satz vom Nullprodukt), einfache Exponentialgleichung (lösbar durch Logarithmieren).

Lösung: $x_1 = -4$, $x_2 = 0$, $x_3 = \ln(3/2)$.

Aufgabe 5: Bestimme die Lösungen der folgenden Gleichung:

$$3e^{2x} + 4e^x - 7 = 0.$$

Vorgehensweise: Substitution z=e^x -> quadratische Gleichung -> Rücksubstitution e^x=z -> Logarithmieren.

Lösung: x = 0.

Aufgabe 6: Löse die Gleichung:

$$e^x + \frac{10}{e^x} = 7$$
.

Vorgehensweise: Multiplikation der (Bruch-) Gleichung mit e^x -> Substitution $z=e^x$ -> quadratische Gleichung -> Rücksubstitution $e^x=z$ -> Logarithmieren.

Lösung: $x_1 = ln(2)$, $x_2 = ln(5)$.

Aufgabe 7: Bestimme die Lösungen der Gleichung:

$$\sin^2(x) + 4\sin(x) = 0, 0 \le x \le 2\pi.$$

Vorgehensweise: Ausklammern -> Satz vom Nullprodukt -> einfache trigonometrische Gleichungen.

Lösung: $x_1 = 0$, $x_2 = \pi$, $x_3 = 2\pi$.

Aufgabe 8: Bestimme die Lösungen der Gleichung:

$$\cos^2(x) - 2\cos(x) - 3 = 0, 0 \le x \le 2\pi.$$

Vorgehensweise: Substitution $z=\cos(x)$ -> quadratische Gleichung -> Rücksubstitution $\cos(x)=z$ -> einfache trigonometrische Gleichungen.

Lösung: x=π.

Aufgabe 9: Löse die Gleichung:

$$\left(\frac{8}{x^3} - 1\right)\cos(2x) = 0, \ 0 \le x \le 2\pi$$

Vorgehensweise: Satz vom Nullprodukt -> kubische (Bruch-, Potenz-) Gleichung, einfache trigonometrische Gleichung.

Lösung: $x_1 = 2$, $x_2 = \pi/4$, $x_3 = 3\pi/4$, $x_4 = 5\pi/4$, $x_5 = 7\pi/4$.

Aufgabe 10: Löse die Gleichung:

$$\frac{1}{8} \left(e^{-0.5x} - 10 \right) (\sin^2(x) - 1) = 0 , 0 \le x \le 2\pi$$

Vorgehensweise: Multiplikation der Gleichung mit 8 -> Satz vom Nullprodukt -> einfache Exponentialgleichung, quadra-

Differentiation, Integration

Ableitungsregeln (Funktionen u(x), v(x)):
$$(u(x)+v(x)) = u'(x)+v'(x) \text{ (Summenregel)}$$

$$(u(x)+v(x)) = u'(x) \text{ (additive Konstante)}$$

$$(u(x)+r) = u'(x) \text{ (additive Konstante)}$$

$$(u(x)) = u'(x) \text{ (untliplikative Konstante)}$$

$$(u(x)v(x)) = u'(x)v(x) + u(x)v'(x) \text{ (Produktregel)}$$

$$(u(x)v(x)) = u'(x)v(x) + u(x)v'(x) \text{ (Quotientenregel)}$$

$$(u(x)) = u'(x)v(x) - u(x)v'(x) \text{ (Quotientenregel)}$$

$$(u(x)) = u'(x)v(x) - u(x)v'(x) \text{ (Rettenregel)}$$

$$(u(x)) = u'(x)v(x) - u(x)v'(x) \text{ (Kettenregel)}$$

$$(u(x)) = u'(x)v(x) - u(x)v'(x) \text{ (Rettenregel)}$$

$$(u(x)) = u'(x)v(x) - u(x)v'(x) \text{ (Rettenregel)}$$

$$(u(x)) = u'(x)v(x) - u(x)v'(x) \text{ (Rettenregel)}$$

$$(u(x)) = u'(x)v(x) - u(x)v'(x) + u($$

Regeln der Differentiation und Integration

Möglichkeit 1	Möglichkeit 2
Funktion f(x), Stelle x ₀	Funktion f(x), Stelle x ₀
1. Ableitung f'(x)	1. Ableitung f'(x)
Funktionswert $f(x_0)$, Steigung $f'(x_0)$	Ansatz: y = mx + c als Tangentenformel
Einsetzen in Tangentenformel	Steigung $m = f'(x_0)$
Tangente: t: $y = f'(x_0)(x - x_0) + f(x_0)$	y-Achsen-Abschnitt $c = f(x_0) - mx_0$

Tangentengleichung

Möglichkeit 1	Möglichkeit 2
Funktion f(x), Stelle x ₀	Funktion f(x), Stelle x ₀
1. Ableitung f'(x)	1. Ableitung f'(x)
Funktionswert $f(x_0)$, Steigung $f'(x_0)$	Ansatz: y = mx + c als Normalenformel
Einsetzen in Normalenformel	Steigung $m = -\frac{1}{f'(x_0)}$
Normale: $n: \ y = -\frac{1}{f'(x_0)}(x - x_0) + f(x_0)$	y-Achsen-Abschnitt $c = f(x_0) - mx_0$

Normalengleichung

Vorgehensweise:

Funktion f(x) -> Integrations regeln -> F(x) als eine Stammfunktion von f(x) mit. F'(x) = f(x)

Vorgehensweise:

Zu einer Funktion f(x) ist die Menge der Stammfunktionen F(x) eine Schar paralleler Kurven, die sich durch eine Integrationskonstante C voneinander unterscheiden. Einer speziellen Stammfunktion F(x) durch einen Punkt $P(x_0|y_0)$ entspricht eine Integrationskonstante C, bestimmbar über $F(x_0) = y_0$ und mit $F_0(x)$ als schon errechneter Stammfunktion zu f(x), so dass $C = y_0 - F_0(x_0)$ und $F(x) = F_0(x) + C$ gilt.

Stammfunktion

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Vorgehensweise:

Bestimmung einer Stammfunktiion F(x) zu f(x)

Einsetzen der oberen und der unteren Grenze b und a in die Stammfunktion

Stammfunktionswert der oberen Grenze minus Stammfunktionswert der unteren Grenze bilden

Bestimmtes Integral

Vorgehensweise:

Bestimmung der Nullstellen einer Funktion f(x): f(x) = 0 (auf einem Intervall [a; b]). (Intervallgrenzen und) Nullstellen sind: $x_1, x_2, x_3, ...$

Bestimmung einer Stammfunktion F(x) zu f(x)

Errechnung der bestimmten Integrale als Teilflächen:

$$\pm A_1 = \int_{x_1}^{x_2} f(x) dx = [F(x)]_{x_1}^{x_2}, \ \pm A_2 = \int_{x_2}^{x_3} f(x) dx = [F(x)]_{x_2}^{x_2}, \ \cdots$$

Aufaddieren der Teilflächen zur Gesamtfläche:

 $A = A_1 + A_2 + ...$

Fläche zwischen Funktion und x-Achse

Bestimmung der Schnittstellen zweier Funktionen f(x) und g(x): f(x) = g(x) (auf einem Intervall [a; b]). (Intervallgrenzen und) Schnittstellen sind: x_1, x_2, x_3, \dots (n Schnittstellen, n-1 Flächen) Bestimmung einer Stammfunktion H(x) zu h(x) = f(x) - g(x) (Differenzfunktion h(x) vereinfachen)

Errechnung der bestimmten Integrale als Teilflächen:

$$\pm A_1 = \int_{x_1}^{x_2} h(x) dx = [H(x)]_{x_1}^{x_2}, \ \pm A_2 = \int_{x_{21}}^{x_2} h(x) dx = [H(x)]_{x_2}^{x_2}, \ \cdots$$

Aufaddieren der Teilflächen zur Gesamtfläche: $A = A_1 + A_2 + ...$

Fläche zwischen zwei Funktionen

Aufgabe 11: Leite die Funktion f(x) ab und fasse die Ableitung zusammen:

$$f(x) = \frac{4}{5}x(x-1)^2.$$

Vorgehensweise: Im Funktionsterm Klammern auflösen und Ausmultiplizieren -> Ableitung mit Potenz-, Faktor- und Summenregel.

Lösung: $f(x) = 0.8x^3 - 1.6x^2 + 0.8x -> f'(x) = 2.4x^2 - 3.2x + 0.8$.

Aufgabe 12: Bilde die 1. Ableitung der Funktion:

$$f(x) = \frac{4}{3x^2} - 5x + 8$$
.

Vorgehensweise: Funktionsterm als Summe von Potenzen -> Ableitung nach Potenz-, Faktor- und Summenregel.

Lösung: $f(x) = 4x^{-2}/3 - 5x + 8 \Rightarrow f'(x) = -8x^{-3}/3 - 5 = -8/(3x^3) - 5$.

Aufgabe 13: Bilde die 1. Ableitung der Funktion:

$$f(x) = \frac{10}{x} - 3\sin(2x) + 5\cos(3x)$$
.

Vorgehensweise: Bruch in Potenzschreibweise -> Ableitung mit Potenz-, Faktorregel, Regel für trigonometrische Funktionen, Kettenregel und Summenregel.

Lösung: $f(x) = 10x^{-1} - 3\sin(2x) + 5\cos(3x) - 5\sin(3x) - 5\cos(2x) - 15\sin(3x) = -10/x^2 - 6\cos(2x) - 15\sin(3x)$.

Aufgabe 14: Bilde die 1. Ableitung der Funktion:

$$f(x) = (x^2 + 4x - 6)\sin(x)$$
.

Vorgehensweise: Ableitung mit Produktregel und für die zwei Faktoren mit Potenz-, Faktor- und Summenregel bzw. mit der Regel für Sinusfunktionen.

Lösung: $f'(x) = (2x+4)\sin(x) + (x^2+4x-6)\cos(x)$.

Aufgabe 15: Leite ab und fasse die Ableitung zusammen:

$$f(x) = \frac{x^4 + 5}{e^{2x}}.$$

Vorgehensweise: Bruch als Produkt -> Ableitung mit Produktregel und für die zwei Faktoren mit Potenz-, Faktor- und Summenregel bzw. mit Kettenregel.

Lösung: $f(x) = (x^4 + 5)e^{-2x} -> f'(x) = (-2x^4 + 4x^3 - 10)e^{-2x}$.

Aufgabe 16: Wie lautet die Gleichung der Tangente an die Funktion $f(x) = \frac{4}{x^2} + \frac{x}{2}$ an der Stelle $x_0 = -2$?

Vorgehensweise: Erstellen der Tangentengleichung nach Tangentenformel oder mit Ansatz: y = mx + c.

Lösung: $f(x) = 4x^{-2} + 0.5x$, $f'(x) = -8x^{-3} + 0.5 = -8/x^3 + 0.5 = -8/x$

Aufgabe 17: We schneidet die Tangente an die Funktion $f(x) = (2x + 5)\cos(\pi x)$ im Punkt P(1|f(1)) die x-Achse des Koordinatensystems?

Vorgehensweise: Ableitung mit Produkt- und Kettenregel -> Erstellen der Tangentengleichung nach Tangentenformel oder mit Ansatz: y = mx + c -> Ermittlung der Nullstelle der Tangente.

Lösung: $f(x) = (2x+5)\cos(\pi x)$, $f'(x) = 2\cos(\pi x) - \pi(2x+5)\sin(\pi x) -> f(1) = -7$, f'(1) = -2 -> Tangente t: y = -2x - 5; Gleichung: $y = 0 \Leftrightarrow -2x - 5 = 0$ -> Nullstelle: x = -2,5.

Aufgabe 18: We schneidet die Tangente an die Funktion $f(x) = 4e^{-0.5x} + 6$ im Punkt P(0|y₀) die Asymptote der Funktion?

Vorgehensweise: Ableitung mit Regel für Exponentialfunktionen -> Erstellen der Tangentengleichung nach Tangentenformel oder mit Ansatz: y = mx + c -> Schnittpunkt zwischen Tangente und Asymptote.

Lösung: $f(x) = 4e^{-0.5x} + 6$, $f'(x) = -2e^{-0.5x} -> f(0) = 10$, f'(0) = -2 -> Tangente t: y = -2x + 10; Asymptote: y = 6 -> Gleichung: y = -2x + 10 = 6 -> Schnittstelle: x = 2 -> Sch

Aufgabe 19: Berechne den Flächeninhalt des Dreiecks zwischen der x-Achse des Koordinatensystems und der Tangente und Normalen zur Funktion $f(x) = \frac{x^2}{4} + 1$ im Punkt P(2|f(2)).

Vorgehensweise: Ableitung mit Potenz- und Faktorregel -> Erstellen der Tangentengleichung nach Tangentenformel oder mit Ansatz: y = mx + c bzw. der Normalengleichung nach Normalenformel oder mit Ansatz: y = mx + c -> Bestimmung der Nullstellen von Tangente und Normale -> Dreieck mit Grundseite als Differenz der zwei Nullstellen, mit Höhe als y-Wert des vorgegebenen Punktes.

Lösung: $f(x) = x^2/4 + 1$, f'(x) = 0.5x -> f(2) = 2, f'(2) = 1, -1/f'(2) = -1 -> Tangente t: y = x - 1, Normale n: y = -x + 3 -> Nullstellen: $x_t = 1$, $x_n = 3$ -> Dreiecksgrundseite: g = 2 LE, Dreieckshöhe: h = 2 LE -> Dreiecksfläche: h = 2 LE.

Aufgabe 20: Bestimme eine Stammfunktion F(x) zu:

$$f(x) = \frac{2}{5}x^3 - \frac{5}{2x^2} + 3$$
.

Vorgehensweise: Funktionsterm als Summe von Potenzen -> Integration mit Potenz-, Faktor- und Summenregel.

Lösung: $f(x) = 2x^3/5 - 5x^2/2 + 3 -> F(x) = 0.1x^4 + 5x^1/2 + 3x = 0.1x^4 + 3x + 5/(2x)$.

Aufgabe 21: Bestimme alle Stammfunktionen zur Funktion:

$$f(x) = \frac{1}{2}x^2 + 2\cos(5x).$$

Vorgehensweise: Integration mit Potenz-, Faktor- und Summenregel, Regel für trigonometrische Funktionen -> Integrationskonstante C.

Lösung: $F(x) = x^3/6 + 2\sin(5x)/5 + C$.

Aufgabe 22: Ermittle zur Funktion $f(x) = \frac{2}{3}e^{x+1} - x + \frac{1}{6}$ die Stammfunktion F(x) mit F(-1) = 4.

Vorgehensweise: Integration mit Potenz-, Faktor- und Summenregel, Regel für Exponentialfunktionen -> Integrationskonstante C -> Bestimmung der Integrationskonstanten C.

Lösung: $F(x) = 2e^{x+1}/3 - x^2/2 + x/6 + C$, $F(-1) = 4 -> C = 4 -> F(x) = 2e^{x+1}/3 - x^2/2 + x/6 + 4$.

Aufgabe 23: Wie lautet zur Funktion $f(x) = \frac{2+x^2}{x}$ die Stammfunktion, auf deren Kurve der Punkt P(1|3) liegt?

Vorgehensweise: Zergliederung des Funktionsterms in einzelne Summanden -> Integration mit Potenz-, Faktor- und Summenregel -> Integrationskonstante C -> Bestimmung der Integrationskonstanten C.

Lösung: $f(x) = 2/x + x -> F(x) = 2\ln(x) + x^2/2 + C$, $F(1) = 3 -> C = 2.5 -> F(x) = 2\ln(x) + x^2/2 + 2.5$.

Aufgabe 24: Zeige, dass $F(x) = (x^2 + 5x - 5)e^x$ eine Stammfunktion zur Funktion $f(x) = x(x+7)e^x$ ist.

Vorgehensweise: Ableitung der Stammfunktion F(x) mit Produktregel ergibt die Funktion f(x).

Lösung: $F'(x) = (2x+5)e^x + (x^2+5x-5)e^x = (x^2+7x)e^x = f(x)$.

Aufgabe 25: Berechne:

$$\int_{-2}^{2} (x^4 + x^2) dx$$
.

Vorgehensweise: Berechnung des bestimmten Integrals über Stammfunktion des Integranden; Integrand und Integrationsbereich sind achsensymmetrisch.

Lösung:
$$\int_{-2}^{2} (x^4 + x^2) dx = 2 \int_{0}^{2} (x^4 + x^2) dx = 2 \left[\frac{1}{5} x^5 + \frac{1}{3} x^3 \right]_{0}^{2} = \frac{272}{15}.$$

Aufgabe 26: Berechne:

$$\int_{0}^{\ln(2)} \frac{4}{e^{2x}} dx$$

Vorgehensweise: : Berechnung des bestimmten Integrals über Stammfunktion des Integranden.

Lösung:
$$\int_{0}^{\ln(2)} \frac{4}{e^{2x}} dx = \int_{0}^{\ln(2)} 4e^{-2x} dx = \left[-2e^{-2x} \right]_{0}^{\ln(2)} = 1.5.$$

Aufgabe 27: Berechne:

$$\int_{0}^{2\pi} (\sin(x) - \cos(2x)) dx$$

Vorgehensweise: Berechnung des bestimmten Integrals über Stammfunktion des Integranden.

Lösung:
$$\int_{-\pi}^{2\pi} (\sin(x) - \cos(2x)) dx = \left[-\cos(x) - \frac{1}{2} \sin(2x) \right]_{-\pi}^{2\pi} = -2.$$

Aufgabe 28: Bestimme den Inhalt der von der Funktion f(x) = -(2x+4)(x-3) und der x-Achse eingeschlossenen Fläche.

Vorgehensweise: Berechnung der Nullstellen der Funktion als Integralgrenzen -> Berechnung des bestimmten Integrals über Stammfunktion des Integranden -> Betrag des Integralwerts als Flächeninhalt.

Lösung:
$$f(x) = 0 \Rightarrow x = -2$$
, $x = 3 \Rightarrow Flächeninhalt: \int_{-2}^{3} -(2x+4)(x-3)dx = 41\frac{2}{3}$ FE = A.

Aufgabe 29: Bestimme den Inhalt der von den Funktion $f(x) = x^2$ und g(x) = x+2 eingeschlossenen Fläche.

Vorgehensweise: Berechnung der Schnittstellen der Funktionen als Integralgrenzen -> Berechnung des bestimmten Integrals über Stammfunktion der Differenzfunktion -> Betrag des Integralwerts als Flächeninhalt.

Lösung:
$$f(x) = g(x) \rightarrow x = -1$$
, $x = 2 \rightarrow Flächeninhalt: \int_{-1}^{2} (x^2 - x - 2) dx = -4.5 \rightarrow A = 4.5 FE.$

Aufgabe 30: Berechne den Inhalt der Fläche zwischen Funktion $f(x) = x^3 - x^2$, Tangente an f(x) im Punkt P(2|f(2)) und y-Achse des Koordinatensystems.

Vorgehensweise: Erstellen der Tangentengleichung nach Tangentenformel oder mit Ansatz: $y = mx + c \rightarrow Flächeninhalt: A = \int_{0}^{2} (f(x) - y) dx$.

Lösung: $f(x) = x^3 - x^2$, $f'(x) = 3x^2 - 2x -> f(2) = 4$, f'(2) = 8 -> Tangente: t: y = 8x - 12 -> Flächeninhalt: A = 28/3 FE.

Aufgabe 31: Löse die Integralgleichung:

$$\int_{1}^{u} \frac{4}{x^2} dx = 2.$$

Vorgehensweise: Berechnung des bestimmten Integrals in Abhängigkeit von u -> Auflösen der Gleichung nach u.

Lösung:
$$\int_{1}^{u} \frac{4}{x^2} dx = 2 \implies \left[-\frac{4}{x} \right]_{1}^{u} = 2 \implies -\frac{4}{u} + 4 = 2 \implies -\frac{4}{u} = -2 \implies -4 = -2u \implies u = 2.$$

Funktionsuntersuchungen

Funktion:
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$

I. Ableitungen (nach Potenz- und Summenregel sowie Regel vom konstanten Faktor):

$$f'(x) = na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + ... + a_1$$

$$f''(x) = n(n-1)a_n x^{n-2} + (n-1)(n-2)a_{n-1} x^{n-3} + ... + 2a_2$$

$$f'''(x) = n(n-1)(n-2)a_nx^{n-3} + (n-1)(n-2)(n-3)a_{n-1}x^{n-4} + ... + 6a_3$$
II. Nullstellen (Anzahl maximal n; Gleichung f(x) = 0 lösen):

 $f(x) = 0 -> x_1, x_2, ... -> N(x_1|0), N(x_2|0), ...$ (Nullstellen mit gerader Vielfachheit als Hoch-/Tiefpunkte ohne Vorzeichenwechsel; Nullstellen mit ungerader Vielfachheit mit Vorzeichenwechsel)

III. Hochpunkte, Tiefpunkte (Anzahl maximal n-1; Gleichung f'(x) = 0 lösen, Lösungen in f''(x) einsetzen):

- a) $f'(x) = 0 \rightarrow x_1, x_2, ...$
- b) $f''(x_1) < 0 -> H(x_1|f(x_1))$ oder $f''(x_1) > 0 -> T(x_1|f(x_1))$; $f''(x_2) < 0 -> H(x_2|f(x_2))$ oder $f''(x_2) > 0 -> T(x_2|f(x_2))$; ...

IV. Wendepunkte (Anzahl maximal n-2; Gleichung f''(x) = 0 lösen, Lösungen in f'''(x) einsetzen):

- a) $f''(x) = 0 \rightarrow x_1, x_2, ...$
- b) $f'''(x_1) \neq 0 \rightarrow W(x_1|f(x_1))$; $f'''(x_2) \neq 0 \rightarrow W(x_2|f(x_2))$; ...

IVa. Sattelpunkte x₀ liegen vor, wenn (nach III. und IV.) qilt:

 $f'(x_0) = 0$, $f''(x_0) = 0$, $f'''(x_0) \neq 0 -> S(x_0|f(x_0))$

Funktionsuntersuchung ganz rationaler Funktionen

Funktion:
$$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \ldots + b_1 x + b_0} = \frac{a_n (x - x_{N1})^{k_1} (x - x_{N2})^{k_2} \cdot \ldots \cdot R_1(x)}{b_m (x - x_{P1})^{k_1} (x - x_{P2})^{k_1} \cdot \ldots \cdot R_2(x)}$$
I. (Maximaler) Definitionsbereich, senkrechte Asymptoten (Polstellen), Nullstellen:

- a) Nenner = 0 -> $b_m x^m + b_{m-1} x^{m-1} + ... + b_1 x + b_0 = 0$ -> $x_{P1}, x_{P2}, ... -> D_f = \mathbf{R} \setminus \{x_{P1}, x_{P2}, ...\}$ (Definitionsbereich)
- b) Zähler = $0 \rightarrow a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = 0 \rightarrow x_{N1}, x_{N2}, ...$
- c) Auswertung:
- Stimmt eine Nennernullstelle x_P mit einer Zählernullstelle x_N überein, so kann der Funktionsterm f(x) um den Faktor $(x-x_0)^l = (x-x_0)^k$ (l=k) zu f*(x) gekürzt werden; ist die Vielfachheit der Nennernullstelle echt größer k, so liegt bei x_P eine senkrechte Asymptote vor; ist die Vielfachheit der Nennernullstelle kleiner gleich k, so liegt bei x_P eine Lücke mit Lückenwert $f^*(x_P)$ vor.
- Ansonsten liegen bei x_{P1}, x_{P2}, \dots senkrechte Asymptoten mit Linearfaktor $(x-x_p)^l$ vor, und zwar mit Vorzeichenwechsel bei ungeradem I (mit Vorzeichenwechsel bei senkrechter Asymptote x_P mit f(x)->-∞ $(x->x_P, x< x_P)$ und $f(x)->\infty (x->x_P, x>x_P)$ oder mit $f(x)->\infty (x->x_P, x< x_P)$ und $f(x)->\infty (x->x_P, x>x_P)$, ohne Vorzeichenwechsel bei geradem I (ohne Vorzeichenwechsel bei senkrechter Asymptote x_P mit f(x)->-∞ $(x->x_P, x< x_P)$ und $f(x)->-\infty (x->x_P, x>x_P)$ oder mit $f(x)->\infty (x->x_P, x< x_P)$ und $f(x)->\infty (x->x_P, x>x_P)$.
- Ansonsten liegen weiter bei x_{N1}, x_{N2}, ... Nullstellen mit Linearfaktor (x-x_p)^k vor, und zwar mit Vorzeichenwechsel bei ungeradem k, ohne Vorzeichenwechsel bei geradem k (Hoch-, Tiefpunkt).

II. Waagerechte Asymptote: Für x -> ±∞ gilt:

$$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + ... + b_1 x + b_0}$$

$$\begin{cases} -> 0 & \text{falls n < m} \\ -> \frac{a_n}{b_m} & \text{falls n = m} \\ -> \pm \infty & \text{falls n > m} \end{cases}$$

Im Fall n>m ergibt sich (eventuell nach Polynomdivision) eine Grenzkurve y = $\frac{a_n}{b_m} x^{n-m} + ...$; die Näherungs-

kurve ist eine schiefe Asymptote (Gerade) y = mx+c, wenn n=m+1 gilt.

III. Ableitungen (nach Quotientenregel; zuvor (wenn möglich) Funktionsterm f(x) zu f*(x) kürzen; bei Ableitungen gleiche Faktoren in allen Summanden des Bruchs kürzen; zu beachten sind Vorgehensweisen zum leichteren Ableiten, d.h.: Vermeidung der Quotientenregel bei konstantem Zähler und Anwendung der Kettenregel, Vermeidung der Quotientenregel z.B. bei gebrochen rationalen Funktionen mit Nenner als Potenz xⁿ und Anwendung der Potenzregel)

IV. Hochpunkte, Tiefpunkte (relative Extrema; Gleichung f'(x) = 0 lösen, Lösungen in f'(x) einsetzen):

a) $f'(x) = 0 \rightarrow x_1, x_2, ...$

b) $f'(x_1) < 0 \rightarrow H(x_1|f(x_1))$ oder $f'(x_1) > 0 \rightarrow T(x_1|f(x_1))$; $f'(x_2) < 0 \rightarrow H(x_2|f(x_2))$ oder $f'(x_2) > 0 \rightarrow T(x_2|f(x_2))$; ...

V. Wendepunkte (Gleichung f''(x) = 0 lösen, Lösungen in f'''(x) einsetzen):

a) $f''(x) = 0 \rightarrow x_1, x_2, ...$

b) $f'''(x_1) \neq 0 \rightarrow W(x_1|f(x_1))$; $f'''(x_2) \neq 0 \rightarrow W(x_2|f(x_2))$; ...

Va. Sattelpunkte x₀ liegen vor, wenn (nach IV. und V.) gilt:

 $f'(x_0) = 0$, $f''(x_0) = 0$, $f'''(x_0) \neq 0 \rightarrow S(x_0|f(x_0))$

Funktionsuntersuchung gebrochen rationaler Funktionen

Differenzierbare Funktion: $f: \mathbf{R} \rightarrow \mathbf{R}$ mit Funktionsterm y = f(x)

I. Ableitungen: f'(x), f''(x), f'''(x)

II. Nullstellen (Gleichung f(x) = 0 lösen):

 $f(x) = 0 \rightarrow x_1, x_2, \dots \rightarrow N(x_1|0), N(x_2|0), \dots$

III. Hochpunkte, Tiefpunkte (Gleichung f'(x) = 0 lösen, Lösungen in f''(x) einsetzen):

a) $f'(x) = 0 \rightarrow x_1, x_2, ...$

b) $f''(x_1) < 0 \rightarrow H(x_1|f(x_1))$ oder $f''(x_1) > 0 \rightarrow T(x_1|f(x_1))$; $f''(x_2) < 0 \rightarrow H(x_2|f(x_2))$ oder $f''(x_2) > 0 \rightarrow T(x_2|f(x_2))$; ...

IIIa. Punkte mit waagerechter Tangente (Gleichung f'(x) = 0 lösen):

 $f'(x) = 0 \rightarrow x_1, x_2, \dots \rightarrow P_1(x_1|f(x_1)), P_2(x_2|f(x_2)), \dots$

IV. Wendepunkte (Gleichung f"(x) = 0 lösen, Lösungen in f"(x) einsetzen):

a) $f''(x) = 0 \rightarrow x_1, x_2, ...$

b) $f'''(x_1) \neq 0 \rightarrow W(x_1|f(x_1))$; $f'''(x_2) \neq 0 \rightarrow W(x_2|f(x_2))$; ...

IVa. Sattelpunkte x₀ liegen vor, wenn (nach III. und IV.) gilt:

 $f'(x_0) = 0$, $f''(x_0) = 0$, $f'''(x_0) \neq 0 \rightarrow S(x_0|f(x_0))$

Funktionsuntersuchung von Funktionen allgemein

Aufgabe 32: Bestimme die Nullstellen der Funktion:

 $f(x) = x^4 + 5x^3 - 6x^2.$

Vorgehensweise: $f(x) = 0 \rightarrow \text{Nullstellen}$.

Lösung: Nullstellen: $N_1(-6|0)$, $N_2(0|0)$ (doppelt), $N_3(1|0)$.

Aufgabe 33: An welchen Stellen besitzt die Funktion $f(x) = x^2 e^{-0.5x}$ waagerechte Tangenten?

Vorgehensweise: f'(x) = 0 -> Stellen/Punkte mit waagerechter Tangente.

Lösung: $f'(x) = (2x-0.5x^2)e^{-0.5x} = 0 => Stellen: x_1 = 0, x_2 = 4.$

Aufgabe 34: Ermittle Koordinaten und Art des einzigen Extrempunktes der Funktion:

$$f(x) = \frac{1}{8}x^4 - \frac{1}{2}x^3 + 2$$
.

Vorgehensweise: f'(x) = 0 -> Tief-/Hoch-/Sattelpunkte -> Überprüfung mit f''(x).

Lösung: Extremstellen: f'(x) = 0 - [x = 0; Sattelpunkt], x = 3 - f''(3) - Tiefpunkt; T(3) - Tiefpu

Aufgabe 35: Ermittle auf dem Intervall [-2; 4] alle Extrempunkte der Funktion:

$$f(x) = 4\cos(\frac{\pi}{2}x) + 1.$$

Vorgehensweise: Periodizität der Kosinusfunktion -> Tief- und Hochpunkte mit x-Werten resultierend aus der Periode und mit y-Werten resultierend aus den Intervallgrenzen des Wertebereichs der Funktion.

 $\label{eq:loss_equation} \textbf{L\"osung} \text{: Definitions bereich: } D_f = [-2; 4], \text{ Wertebereich: } W_f = [-3; 5]. \text{ Periode: } p = 4 \text{ -> Tief-, Hochpunkte: } T_1(-2|-3), H_1(0|5), T_2(2|-3), H_2(4|5).$

Aufgabe 36: Wie lautet die Wendetangente der Funktion $f(x) = e^{0.5x} - \frac{1}{4}e^{-x} + 1$?

Vorgehensweise: f''(x) = 0 -> Wendepunkt -> Erstellen der Tangentengleichung nach Tangentenformel oder mit Ansatz: y = mx + c -> Wendetangente.

Lösung: $f'(x) = 0.5e^{0.5x} + 0.25e^{-x}$, $f''(x) = 0.25e^{0.5x} - 0.25e^{x} - 0.25e^{x} - 0.25e^{x} - 0.25e^{x}$ -> f''(x) = 0 => x = 0 -> Wendepunkt: W(0|1.75), f'(0) = 0.75 -> Wendetangente: f'(x) = 0.75x + 1.75.

Aufgabe 37: Bestimme den Wertebereich der Funktion $f(x) = \frac{4}{x} + x + 5$.

Vorgehensweise: Ermittlung der Polstelle und der Extrempunkte -> Wertebereich unter Berücksichtigung der y-Werte der Extrempunkte.

Lösung: Polstelle (senkrechte Asymptote): x = 0 mit Vorzeichenwechsel (Definitionsbereich: $D_f = \mathbf{R} \setminus \{0\}$); $f'(x) = 0 \Rightarrow x = \pm 2$ -> Hochpunkt: H(-2|1), Tiefpunkt: T(2|9) -> Wertebereich: $W_f = \mathbf{R} \setminus \{1\}$; 9).

Bestimmungsaufgaben

Funktion: y = mx + b (m als Steigung, b als y-Achsen-Abschnitt)	
Punkt $P(x_1 y_1)$, Steigung m	Punkte $P(x_1 y_1), Q(x_2 y_2)$
Punktsteigungsform: $\frac{y-y_1}{x-x_1} = m$	Zweipunkteform: $\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$
Umstellen zu: $y = m(x - x_1) + y_1$	Umstellen zu: $y = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) + y_1$
	Steigung: $m = \frac{y_2 - y_1}{x_2 - x_1}$
<u>Ursprungsgerade</u> y = mx (durch den Ursprung): $y = \frac{y_1}{x_1}x$ mit: $m = \frac{y_1}{x_1}$	

Bestimmungsaufgabe für Geraden

Funktion 2. Grades	Funktion 3. Grades	Funktion 4. Grades
	Funktion und Ableitungen:	
$f(x) = ax^2 + bx + c$	$f(x) = ax^3 + bx^2 + cx + d$	$f(x) = ax^4 + bx^3 + cx^2 + dx + e$
f'(x) = 2ax + b	$f'(x) = 3ax^2 + 2bx + c$	$f'(x) = 4ax^3 + 3bx^2 + 2cx + d$
	f''(x) = 6ax + 2b	$f''(x) = 12ax^2 + 6bx + 2c$
3 Unbekannte a, b, c->	4 Unbekannte a, b, c, d ->	5 Unbekannte a, b, c, d, e ->
3 Funktionseigenschaften ->	4 Funktionseigenschaften ->	5 Funktionseigenschaften ->
3 Gleichungen	4 Gleichungen	5 Gleichungen
Lineare Gleichungen vom Typ:		
$f(x_1) = ax_1^2 + bx_1 + c = y_1$	$f(x_1) = ax_1^3 + bx_1^2 + cx_1 + d = y_1$	$f(x_1) = ax_1^4 + bx_1^3 + cx_1^2 + dx_1 + e = y_1$
$f'(x_2) = 2ax_2 + b = y_2$	$f'(x_2) = 3ax_2^2 + 2bx_2 + c = y_2$	$f'(x_2) = 4ax_2^3 + 3bx_1^3 + 2cx_2 + d = y_2$
	$f''(x_3) = 6ax_3 + 2b = y_3$	$f''(x_3) = 12ax_3^2 + 6bx_3 + 2c = y_3$
für bestimmte x- und y-Werte		
Aufstellen des linearen Gleichungssystems:		
Gleichungen mit Unbekannten a, b, gemäß den Funktionseigenschaften:		
• • • • • • • • • • • • • • • • • • • •		

Punkt $P(x_1|y_1)$: $f(x_1) = y_1$ Nullstelle x_0 bzw. $N(x_0|0)$: $f(x_0) = 0$ Ursprung O(0|0) als Funktionspunkt: f(0) = 0y-Achsenabschnittspunkt $S_v(0|y_0)$: $f(0) = y_0$ Schnittstelle x_1 mit Funktion g(x): $f(x_1) = g(x_1)$ Steigung m in x₁: $f'(x_1) = m$ Berührpunkt x₁ mit der x-Achse: $f(x_1) = 0, f'(x_1) = 0$ Ursprung O(0|0) als Berührpunkt: f(0) = 0, f'(0) = 0Tangente y = mx + c in x_1 : $f(x_1) = y(x_1) = mx_1+c, f'(x_1) = m$

```
Normale y = mx + c in x_1:
                                        f(x_1) = y(x_1) = mx_1+c, f'(x_1) = -1/m
Berührpunkt x_1 mit Funktion g(x):
                                        f(x_1) = g(x_1), f'(x_1) = g'(x_1)
Hoch-/Tiefpunkt x<sub>E</sub>:
                                        f'(x_E) = 0
Hoch-/Tiefpunkt H/T(x_F|y_f):
                                        f(x_E) = y_E, f'(x_E) = 0
Krümmung k in x₁:
                                        f''(x_1) = k
Wendepunkt xw:
                                        f''(x_W) = 0
Wendepunkt W(x_W|y_W):
                                        f(x_W) = y_W, f''(x_W) = 0
Wendetangente y = mx + c in x_w:
                                        f(x_W) = y(x_W) = mx_W + c, f'(x_W) = m, f''(x_W) = 0
Wendenormale y = mx + c in x_W:
                                        f(x_W) = y(x_W) = mx_W + c, f'(x_W) = -1/m, f''(x_W) = 0
Sattelpunkt x<sub>S</sub>:
                                        f'(x_S) = 0, f''(x_S) = 0
                                        f(x_S) = y_S, f'(x_S) = 0, f''(x_S) = 0
Sattelpunkt S(x_S|y_S)::
Lösen des linearen Gleichungssystems (etwa mit dem Gauß-Algorithmus) -> Errechnung der Unbekannten
a, b, ... ->
                                         Aufstellen der Funktionsgleichung:
f(x) = ax^2 + bx + c
                                         f(x) = ax^3 + bx^2 + cx + d
                                                                                f(x) = ax^4 + bx^3 + cx^2 + dx + e
                                         Bestimmungsaufgabe für ganz rationale Funktionen (2.-4. Grades)
Funktion 2. Grades
                                        Funktion 3. Grades
                                                                                Funktion 4. Grades
(Symmetrie zur y-Achse)
                                        (Symmetrie zum Ursprung)
                                                                                (Symmetrie zur y-Achse)
                                        (f(-x) = -\underline{f(x)})
(f(-x) = f(x))
                                                                                (f(-x) = f(x))
                                                                                 f(x) = ax^4 + cx^2 + \overline{e}
f(x) = ax^2 + c
                                        f(x) = ax^3 + cx
f'(x) = 2ax
                                        f'(x) = 3ax^2 + c
                                                                                 f'(x) = 4ax^3 + 2cx
                                        f''(x) = 6ax
                                                                                 f''(x) = 12ax^2 + 2c
2 Unbekannte a, c->
                                        2 Unbekannte a, c ->
                                                                                3 Unbekannte a, c, e ->
2 Funktionseigenschaften ->
                                        2 Funktionseigenschaften ->
                                                                                3 Funktionseigenschaften ->
2 Gleichungen
                                        2 Gleichungen
                                                                                3 Gleichungen
                                           Lineare Gleichungen vom Typ:
f(x_1) = ax_1^2 + c = y_1
                                                                                 f(x_1) = ax_1^4 + cx_1^2 + e = y_1
                                        f(x_1) = ax_1^3 + cx_1 = y_1
                                        f'(x_2) = 3ax_2^2 + c = y_2
f'(x_2) = 2ax_2 = y_2
                                                                                 f'(x_2) = 4ax_2^3 + 2cx_2 = y_2
                                                                                 f''(x_3) = 12ax_3^2 + 2c = y_3
                                        f''(x_3) = 6ax_3 = y_3
                                           für bestimmte x- und y-Werte
Aufstellen des linearen Gleichungssystems:
Gleichungen mit Unbekannten a, c, ... gemäß den Funktionseigenschaften:
Punkt P(x_1|y_1):
                                        f(x_1) = y_1
                                        f(x_0) = 0
Nullstelle x_0 bzw. N(x_0|0):
Ursprung O(0|0) als Funktionspunkt: f(0) = 0
v-Achsenabschnittspunkt S_v(0|v_0):
                                        f(0) = y_0
Schnittstelle x_1 mit Funktion g(x):
                                        f(x_1) = g(x_1)
Steigung m in x<sub>1</sub>:
                                        f'(x_1) = m
Berührpunkt x₁ mit der x-Achse:
                                        f(x_1) = 0, f'(x_1) = 0
Ursprung O(0|0) als Berührpunkt:
                                        f(0) = 0, f'(0) = 0
Tangente y = mx + c in x_1:
                                        f(x_1) = y(x_1) = mx_1+c, f'(x_1) = m
Normale y = mx + c in x_1:
                                        f(x_1) = y(x_1) = mx_1+c, f'(x_1) = -1/m
Berührpunkt x_1 mit Funktion g(x):
                                        f(x_1) = g(x_1), f'(x_1) = g'(x_1)
Hoch-/Tiefpunkt x<sub>F</sub>:
                                        f'(x_F) = 0
Hoch-/Tiefpunkt H/T(x_F|y_f):
                                        f(x_E) = y_E, f'(x_E) = 0
Krümmung k in x₁:
                                        f''(x_1) = k
Wendepunkt x<sub>w</sub>:
                                        f''(x_W) = 0
Wendepunkt W(x_w|y_w):
                                        f(x_W) = y_W, f''(x_W) = 0
                                        f(x_W) = y(x_W) = mx_W + c, \, f'(x_W) = m, \, f''(x_W) = 0
Wendetangente y = mx+c in x_W:
Wendenormale y = mx + c in x_W:
                                        f(x_W) = y(x_W) = mx_W + c, f'(x_W) = -1/m, f''(x_W) = 0
Sattelpunkt x<sub>S</sub>:
                                        f'(x_S) = 0, f''(x_S) = 0
Sattelpunkt S(x_S|y_S)::
                                        f(x_S) = y_S, f'(x_S) = 0, f''(x_S) = 0
Lösen des linearen Gleichungssystems (etwa mit dem Gauß-Algorithmus) -> Errechnung der Unbekannten
a, c, ... ->
                                        Aufstellen der Funktionsgleichung:
                                        f(x) = ax^3 + cx
                                                                               f(x) = ax^4 + cx^2 + e
 f(x) = ax^2 + c
```

Bestimmungsaufgabe für symmetrische ganz rationale Funktionen (2.-4. Grades)

Aufgabe 38: Gesucht ist die Funktionsgleichung einer Geraden y = mx + c mit Steigung 0,5 und Geradenpunkt P(-3|-5).

Vorgehensweise: Ansatz: y = mx +c -> Steigung: m, Punkt P -> Bestimmung von c -> Gerade: y = mx +c.

Lösung: y = mx + c -> m = 0.5 -> y = 0.5x + c -> P(-3|-5) => c = -3.5 -> Gerade: <math>y = 0.5x - 3.5.

Aufgabe 39: Gesucht ist die Funktionsgleichung einer Geraden y = mx + c durch die Punkte P(-4|1) und Q(2|-11).

Vorgehensweise: Steigung m als Differenzenquotient, Punkt P -> Bestimmung von c -> Gerade: y = mx +c.

Lösung: P(-4|1), $Q(2|-1) \rightarrow m = -2$, $c = -7 \rightarrow Gerade$: y = -2x - 7.

Aufgabe 40: Eine Parabel f(x) 2. Grades besitzt den Scheitelpunkt S(-2|-5); die Parabelkurve läuft durch den Punkt P(2|3). Bestimme die Funktionsgleichung.

Vorgehensweise: Ansatz (Scheitelform einer Parabel): $f(x) = a(x-x_S)^2 + y_S$, Punkt P -> Bestimmung des Koeffizienten a -> Funktionsgleichung.

Lösung: $S(-2|-5) -> f(x) = a(x+2)^2 - 5$, $P(2|3) -> f(x) = 0.5(x+2)^2 - 5 = 0.5x^2 + 2x - 3$.

Aufgabe 41: Auf der Kurve einer Parabel f(x) 2. Grades liegen die Punkte A(-4|63), B(-1|12) und C(6|33). Bestimme die Funktionsgleichung.

Vorgehensweise: Ansatz (Normalform einer Parabel): $f(x) = ax^2 + bx + c \rightarrow Punktprobe mit den vorgegebenen Punkten -> lineares Gleichungssystem -> Gauß-Algorithmus -> Koeffizienten a, b, c -> Funktionsgleichung.$

Lösung: Kurvenpunkte A(-4|63), B(-1|12), C(6|33) -> $f(x) = 2x^2 - 7x + 3$.

Aufgabe 42: Der Graph einer ganz rationalen Funktion f(x) 3. Grades besitzt im Ursprung des Koordinatensystems einen Hochpunkt H sowie den Wendepunkt W(2|-5). Bestimme die Funktionsgleichung.

Vorgehensweise: Ansatz: $f(x) = ax^3 + bx^2 + cx + d$, $f'(x) = 3ax^2 + 2bx + c$, f''(x) = 6ax + 2b, Eigenschaften -> lineares Gleichungssystem -> Gauß-Algorithmus -> Koeffizienten a, b, c, d -> Funktionsgleichung.

Lösung: Hochpunkt H(0|0), Wendepunkt W(2|-5) -> f(0) = 0, f'(0) = 0, f(2) = -5, $f''(2) = 0 -> f(x) = 0.3125x^3 - 1.875x^2$.

Aufgabe 43: Der Graph einer ganz rationalen Funktion f(x) 3. Grades verläuft durch den Ursprung des Koordinatensystems sowie den Punkt P(-4|5) und besitzt den Tiefpunkt T(2|-4). Bestimme die Funktionsgleichung.

Vorgehensweise: Ansatz: $f(x) = ax^3 + bx^2 + cx + d$, $f'(x) = 3ax^2 + 2bx + c$, Eigenschaften -> lineares Gleichungssystem -> Gauß-Algorithmus -> Koeffizienten a, b, c, d -> Funktionsgleichung.

Lösung: Kurvenpunkte P(-4|5), O(0|0), Tiefpunkt T(2|-5) -> f(-4) = 5, f(0) = 0, f(2) = -5, f'(2) = 0 -> $f(x) = 0.1875x^3 + 0.25x^2 - 3.25x$.

Aufgabe 44: Eine ganz rationale Funktion f(x) 4. Grades ist symmetrisch zur y-Achse des Koordinatensystems; weiter gibt es die Nullstelle x = 4 und den Hochpunkt H(2|36). Bestimme die Funktionsgleichung.

Vorgehensweise: Achsensymmetrie -> $f(x) = ax^4 + cx^2 + e$, $f'(x) = 4ax^3 + 2cx$ -> Eigenschaften -> lineares Gleichungssystem -> Gauß-Algorithmus -> Koeffizienten a, c, e -> Funktionsgleichung.

Lösung: Hochpunkt H(2|36), Nullstelle N(4|0) -> f(2) = 36, f'(2) = 0, f(4) = 0 -> $f(x) = -0.25x^4 + 2x^2 + 32$.

Aufgabe 45: Eine ganz rationale Funktion f(x) 4. Grades besitzt den Sattelpunkt S(0|4) und den Tiefpunkt T(2|-2). Bestimme die Funktionsgleichung.

Vorgehensweise: $f(x) = ax^4 + bx^3 + cx^2 + dx + e$, $f'(x) = 4ax^3 + 2bx^2 + 2cx + d$, Eigenschaften -> lineares Gleichungssystem -> Gauß-Algorithmus -> Koeffizienten a, b, c, d, e -> Funktionsgleichung.

Lösung: Sattelpunkt S(0|4), Tiefpunkt $T(2|0) \rightarrow f(0) = 4$, f'(0) = 0, f''(0) = 0, f(2) = -2, $f'(2) = 0 \rightarrow f(x) = 1,125x^4 - 3x^3 + 4$.

Grafisches Ab- und Aufleiten

Bzgl. der Null-, Extrem- und Wendestellen sowie der Monotonie und Krümmung ergibt sich der folgende Zusammenhang zwischen Funktionen f(x), Ableitungen f'(x), f"(x) und Stammfunktionen F(x) und bei asymptotischem Verhalten:

Stammfunktion F(x)	Funktion f(x)
Hochpunkt bei x _E	Nullstelle bei x _E
	VZW von + nach -
Tiefpunkt bei x _E	Nullstelle bei x _E
	VZW von - nach +
steigende Monotonie in x	$f(x) \ge 0$
fallende Monotonie in x	$f(x) \leq 0$
Wendestelle bei xw	Hoch-/Tiefpkt bei xw
Wendestelle als Sattel-	(doppelte) Nullstelle bei
punkt bei x _W	xw
	Hoch-/Tiefpkt bei xw
Linkskrümmung in x	steigende Monotonie in
	x
Rechtskrümmung in x	fallende Monotonie in x
X -> ±∞:	x -> ±∞:
F(x) -> ax + C	f(x) -> a
X -> ±∞:	X -> ±∞:
F(x) -> C	f(x) -> 0

Funktion f(x)	Ableitung f'(x)
Hochpunkt bei x _E	Nullstelle bei x _E
	VZW von + nach -
Tiefpunkt bei x _E	Nullstelle bei x _E
	VZW von - nach +
steigende Monotonie in x	$f'(x) \ge 0$
fallende Monotonie in x	$f'(x) \leq 0$
Wendestelle bei xw	Hoch-/Tiefpkt bei xw
Wendestelle als Sattel-	(doppelte) Nullstelle bei
punkt bei x _W	XW
	Hoch-/Tiefpkt bei xw
Linkskrümmung in x	steigende Monotonie in
	$x, [f''(x) \ge 0]$
Rechtskrümmung in x	fallende Monotonie in x,
	$[f''(x) \le 0]$
X -> ±∞:	X -> ±∞:
$f(x) \rightarrow ax + C$	f'(x) -> a
X -> ±∞:	X -> ±∞:
f(x) -> C	f'(x) -> 0

Es gilt also im Allgemeinen beim Ableiten:

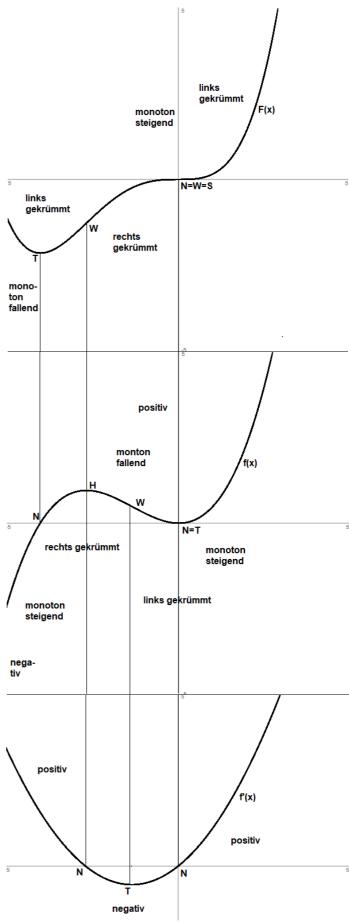
 $Wendestelle \rightarrow Extremstelle \rightarrow Nullstelle$, beim Aufleiten:

 $Null stelle \rightarrow Extremstelle \rightarrow Wendestelle$ oder die NEW-Regel:

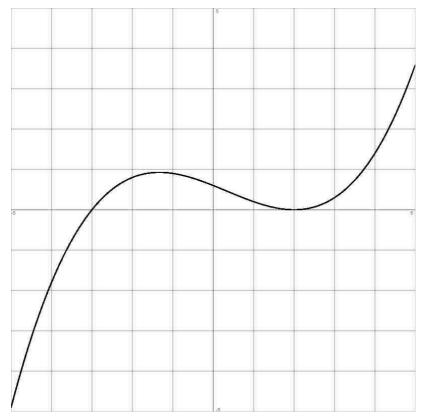
F(x) NEW f(x) N E W f'(x)NEW

Symmetrieeigenschaften (zur y-Achse, zum Ursprung) spielen auch eine Rolle:

a) Die Ableitung f'(x) einer achsensymmetrischen Funktion f(x) ist punktsymmetrisch. b) Die Ableitung f'(x) einer punktsymmetrischen Funktion f(x) ist achsensymmetrisch. c) Für eine punktsymmetrische Funktion f(x) ist jede Stammfunktion F(x) achsen-H = Hochpunkt, N = Nullstelle, S = Sattelpunkt, T = Tiefpunkt, W = Wenderstelle, S = Sattelpunkt, W = Wenderstelle, S = Sattelpunkt, T = Tiefpunkt, W = Wenderstelle, S = Sattelpunkt, T = Tiefpunkt, W = Wenderstelle, S = Sattelpunkt, T = Tiefpunkt, W = Wenderstelle, S = Sattelpunkt, W = Wenderstelle, W = Wen symmetrisch. d) Für eine achsen-symmetrische punkt Funktion f(x) existiert eine punktsymmetrische Stammfunktion mit F(0) = 0.



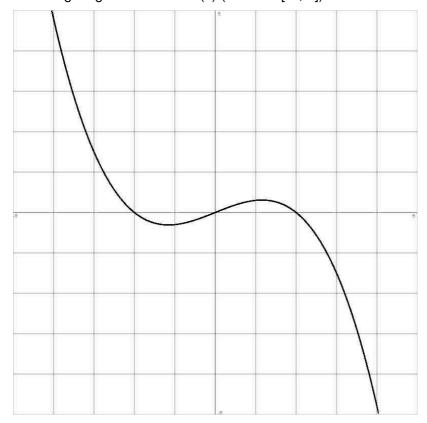
Aufgabe 46: Die Abbildung zeigt die Funktion f(x) auf dem Intervall [-5; 5]. Erläutere, wie viele Nullstellen, Tief-, Hoch- und Wendepunkte die Stammfunktion F(x) dort besitzt.



Vorgehensweise: Vorgehensweise des grafischen Aufleitens u.a. nach der NEW-Regel.

Lösung: Stammfunktion F(x): 0 bis 2 Nullstellen, 1 Tiefpunkt, 0 Hochpunkte, 2 Wendepunkte, davon 1 Sattelpunkt.

Aufgabe 47: Die Abbildung zeigt die Funktion f(x) (Intervall [-5; 5]).



Begründe, welche der folgenden Aussagen wahr, falsch oder unentscheidbar sind.

a) Die Stammfunktion F(x) ist symmetrisch zur y-Achse des Koordinatensystems.

- b) Der Graph der Stammfunktion F(x) besitzt vier Nullstellen.
- c) Die Stammfunktion F(x) verfügt über zwei Tiefpunkte.

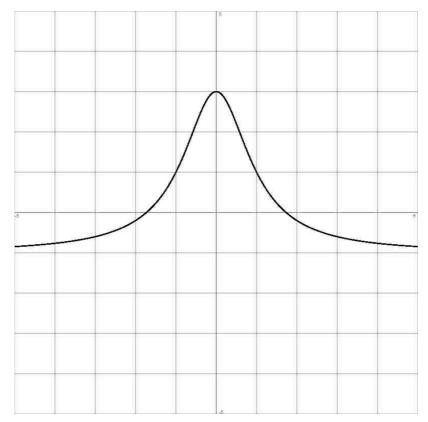
d)
$$\int_{-2}^{2} f(x)dx > 0$$
.
e) $\int_{0}^{0} f'(x)dx = -1.5$.

- f) Der Graph der 1. Ableitung f'(x) hat an der Stelle x = 0 einen Hochpunkt.
- g) Für alle x < 0 ist die 2. Ableitung f"(x) positiv.

Vorgehensweise: Vorgehensweise des grafischen Ab- und Aufleitens u.a. nach der NEW-Regel und unter Berücksichtigung der Symmetrie.

Lösung: a) richtig, b) unentscheidbar, c) falsch; d) falsch; e) richtig; f) richtig; g) richtig.

Aufgabe 48: Die Abbildung zeigt die Funktion f(x) (Intervall [-5; 5]).



Begründe, welche der folgenden Aussagen wahr, falsch oder unentscheidbar sind.

- a) Die Stammfunktion F(x) ist symmetrisch zum Ursprung des Koordinatensystems.
- b) Jede Stammfunktion F(x) besitzt eine (schiefe) Asymptote, die parallel zur 2. Winkelhalbierenden ist.

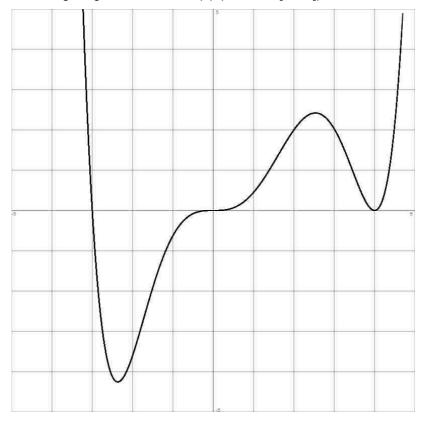
$$C) \int_{0}^{4} f(x) dx < 0.$$

- d) f'(1) = -2.
- e) Die 1. Ableitungsfunktion f'(x) hat als waagerechte Asymptote die x-Achse.
- f) Die 1. Ableitungsfunktion f'(x) besitzt drei Extrempunkte.
- g) Ein Wendepunkt der 1. Ableitungsfunktion f'(x) ist der Ursprung des Koordinatensystems.

Vorgehensweise: Vorgehensweise des grafischen Ab- und Aufleitens u.a. nach der NEW-Regel und unter Berücksichtigung der Symmetrie.

Lösung: a) unentscheidbar, b) richtig, c) falsch, d) richtig, e) richtig, f) falsch, g) richtig.

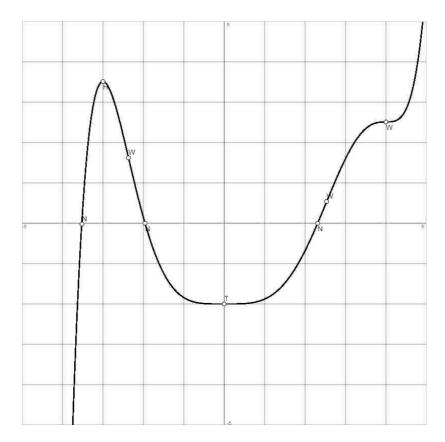
Aufgabe 49: Die Abbildung zeigt die Funktion f(x) (Intervall [-5; 5]).



Skizziere die Stammfunktion F(x), die die y-Achse bei y = -2 schneidet.

Vorgehensweise: Vorgehensweise des grafischen Ab- und Aufleitens u.a. nach der NEW-Regel.

Lösung:



Abkürzungen: FE = Flächeneinheit; LE = Längeneinheit; Lsg. = Lösung(en); R = reelle Zahlen.

www.michael-buhlmann.de / 08.2020 / Mathematik-Aufgabenpool: Grundaufgaben zur Analysis I / Aufgaben 1058-1106