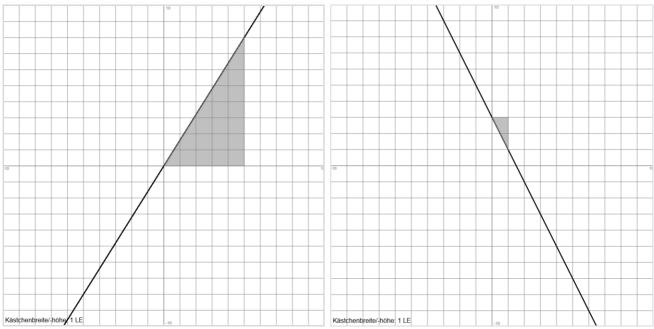
Michael Buhlmann

Mathematik-Aufgabenpool > Geraden IIa (Graphen, y = mx + c)


Einleitung: Geraden sind (als lineare Funktionen) von der Form: y = mx + c mit Geradensteigung m und y-Achsenabschnitt c mit m, c als reelle Zahlen (Funktionsgleichung, Geradenterm). Geraden besitzen (bei x=0) den y-Achsenabschnittspunkt Sy(0|c) und (bei m≠0, y=0) die Nullstelle N(-c/m|0) als Schnittpunkte mit den Achsen des Koordinatensystems. Das Zeichnen von Geraden y = mx + c in ein x-y-Koordinatensystem erfolgt über den y-Achsenabschnitt c durch Eintragen des y-Achsenabschnittspunkts Sy(0|c) auf der y-Achse, danach über die Steigung m mit Hilfe des Steigungsdreiecks durch Eintragen eines zweiten Geradenpunktes P(q|p+c), wenn die Steigung m als Bruch der Form m = p/q mit ganzzahligen p, q bei q>0 dargestellt und vom y-Achsenabschnittspunkt Sy(0|c) das Steigungsdreieck q Längeneinheiten nach rechts und p Längeneinheiten nach oben (p>0) bzw. nach unten (p<0) ermittelt werden kann; durch die (zeichnerisch zu verbindenden) zwei Punkte Sy(0|c) und P(q|p+c) verläuft genau eine Gerade. Umgekehrt kann aus der Zeichnung einer Geraden (Graph) über Steigungsdreieck und y-Achsenabschnitt die Funktionsgleichung (Geradengleichung) ermittelt werden.

Darüber hinaus kann aus zwei (beliebigen, zeichnerisch zu verbindenden) Punkten $P(x_1|y_1)$, $Q(x_2|y_2)$ eine Gerade in ein x-y-Koordinatensystem gezeichnet werden. Die Geradengleichung bestimmt sich mit dem Differenzenquotienten

$$m = \frac{y_2 - y_1}{x_2 - x_1} \text{ gemäß der } \underline{\text{Zweipunkteform:}} \quad \frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1} \text{ als: } y = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) + y_1. \text{ Aus der } \underline{\text{Punktsteigungs-punkteform:}}$$

$$\frac{\text{form }}{x - x_1} = m \text{ folgt: } y = m(x - x_1) + y_1.$$

Geraden y = mx heißen <u>Ursprungsgeraden</u> und verlaufen durch den Ursprung O(0|0) des x-y-Koordinatensystems. Die Ursprungsgerade y = x ist die <u>1. Winkelhalbierende</u>, die Ursprungsgerade y = -x die <u>2. Winkelhalbierende</u>.

 $y = \frac{8}{5}x$: Ursprungsgerade, Steigungsdreieck

y = -2x+3: Gerade

Aufgabe 1: Zeichne die Ursprungsgerade y = mx.

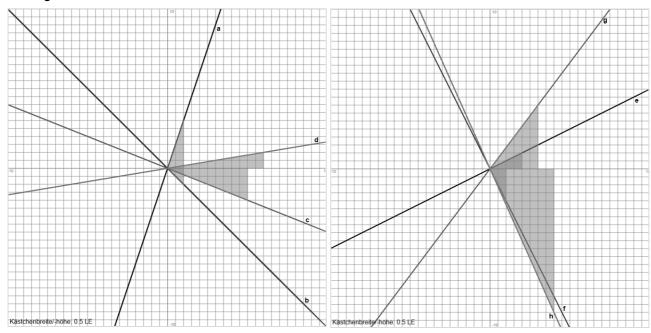
a)
$$y = 3x$$

c)
$$y = -\frac{2}{5}x$$

e)
$$y = 0.5x$$

g)
$$y = \frac{4}{3}x$$

b)
$$y = -x$$


d)
$$y = \frac{1}{6}x$$

f)
$$y = -2x$$

d)
$$y = \frac{1}{6}x$$

f) $y = -2x$
h) $y = -\frac{9}{4}x$

 $\label{eq:vorgehensweise:} \textbf{Vorgehensweise} : \textbf{Die Steigung m der Ursprungsgeraden y = mx ist als Bruch m = p/q zu schreiben, so dass vom Ursprung O(0|0) des x-y-Koordinatensystems das Steigungsdreieck (q nach rechts, p nach oben [p>0] bzw. nach unten$ [p<0]) eingetragen werden kann. Der Graph der Geraden geht durch den Koordinatenursprung und entlang des Steigungsdreiecks.

Lösungen:

Aufgabe 2: Ermittle die Funktionsgleichung der Ursprungsgeraden y = mx, wenn die Steigung m vorgegeben ist. Zeichne den Graphen der Geraden.

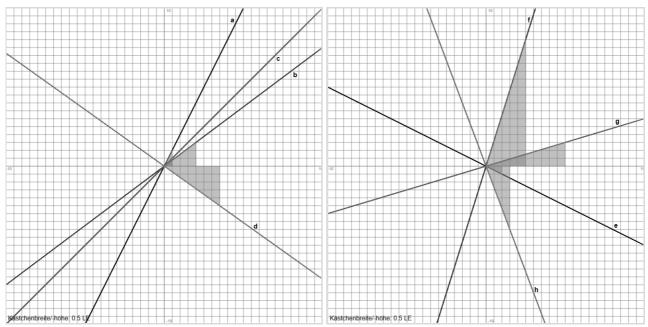
a)
$$m = 2$$

b) m =
$$\frac{3}{4}$$

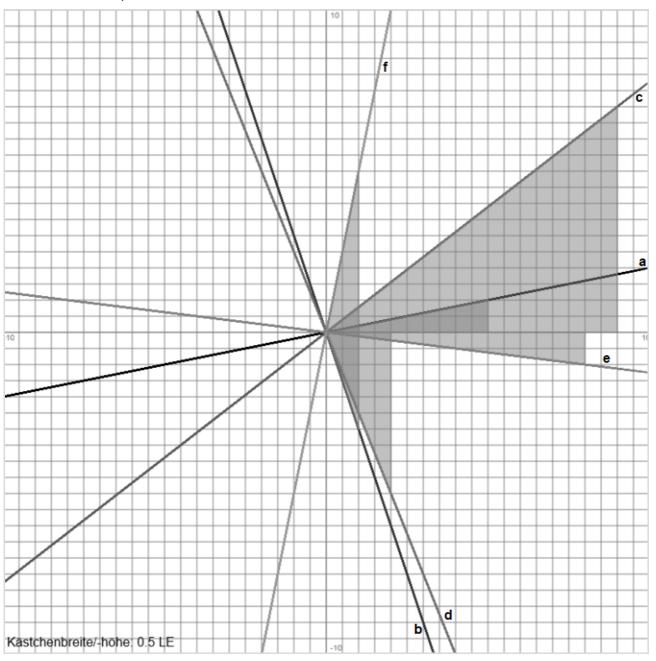
c)
$$m = 1$$

d) m =
$$-\frac{5}{7}$$

e)
$$m = -0.5$$

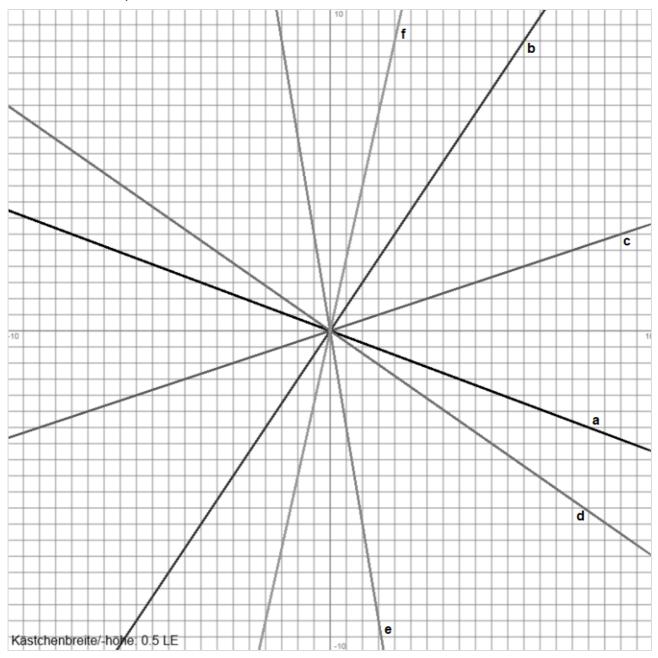

f)
$$m = 3,2$$

g) m =
$$\frac{3}{10}$$


h) m =
$$-\frac{8}{3}$$

Vorgehensweise: Die Steigung m der Ursprungsgeraden y = mx ist als Bruch m = p/q zu schreiben, so dass vom Ursprung O(0|0) des x-y-Koordinatensystems das Steigungsdreieck (q nach rechts, p nach oben [p>0] bzw. nach unten [p<0]) eingetragen werden kann. Der Graph der Geraden geht durch den Koordinatenursprung und entlang des Steigungsdreiecks.

Lösungen: a) y = 2x; b) y = 3x/4; c) y = x; d) y = -5x/7; e) y = -0.5x; f) y = 3.2x; g) y = 0.3x; h) y = -8x/3 - x


Aufgabe 3: Bestimme die Funktionsgleichungen der Ursprungsgeraden y = mx anhand der untenstehenden Graphen.

Vorgehensweise: Zum Graphen der jeweiligen Ursprungsgeraden y = mx ist die Steigung mit Hilfe des Steigungsdreiecks zu bestimmen, so dass m = p/q gilt (p nach rechts, q nach oben bzw. unten entlang des Steigungsdreiecks).

Lösungen: a) y = x/5; b) y = -3x; c) y = 7x/9; d) y = -2.5x; e) y = -x/8; f) y = 5x.

Aufgabe 4: Bestimme die Funktionsgleichungen der Ursprungsgeraden y = mx anhand der untenstehenden Graphen.

Vorgehensweise: Zum Graphen der jeweiligen Ursprungsgeraden y = mx ist die Steigung mit Hilfe eines (einzuzeichnenden) Steigungsdreiecks zu bestimmen, so dass m = p/q gilt (p nach rechts, q nach oben bzw. unten entlang des Steigungsdreiecks).

Lösungen: a) y = -3x/8; b) y = 3x/2; c) y = x/3; d) y = -0.7x; e) y = -6x; f) y = 4.5x.

Aufgabe 5: Zeichne die Gerade y = mx+c.

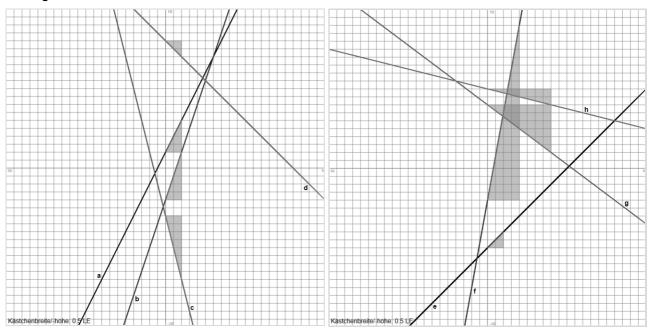
a)
$$y = 2x + 1$$

c)
$$y = -4x - 3$$

e)
$$y = x - 5$$

g)
$$y = -\frac{3}{4}x + 4$$

b)
$$y = 3x - 2$$


d)
$$y = -x + 8$$

f)
$$y = \frac{11}{2}x - 2$$

h)
$$y = -0.25x + 5$$

Vorgehensweise: Zum Graphen der jeweiligen Geraden y = mx+c ist der y-Achsenabschnittspunkt $S_y(0|c)$ in das x-y-Koordinatensystem einzutragen und die Steigung mit Hilfe eines (am y-Achsenabschnittspunkt einzuzeichnenden) Steigungsdreiecks zu bestimmen, so dass m = p/q gilt (p nach rechts, q nach oben bzw. unten entlang des Steigungsdreiecks).

Lösungen:

Aufgabe 6: Zeichne die Gerade y = mx+c.

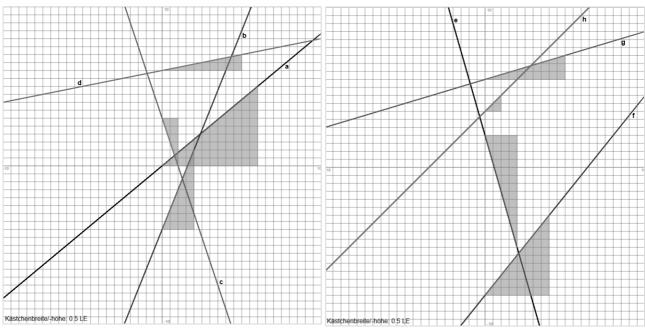
a)
$$y = \frac{5}{6}x$$

b)
$$y = 2.5x - 4$$

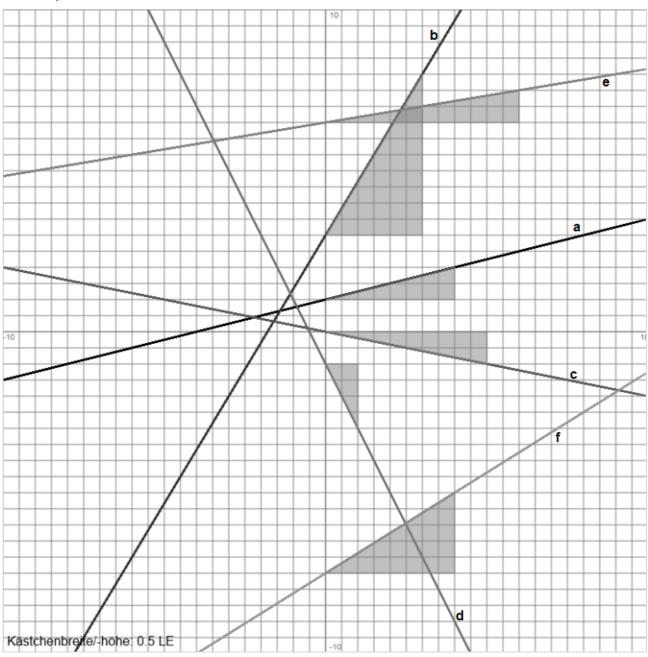
c)
$$y = -3x + 3$$

d)
$$y = \frac{1}{5}x + 6$$

e)
$$y = -\frac{7}{2}x + 2$$

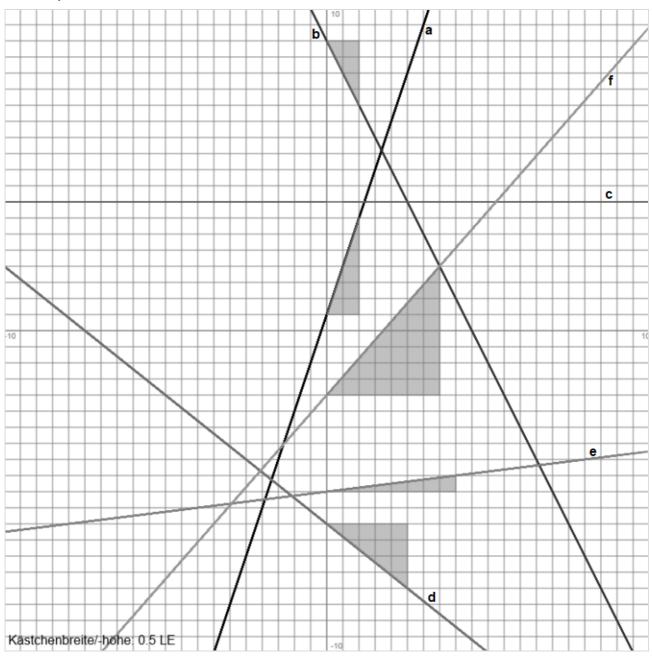

f)
$$y = \frac{5}{4}x - 8$$

g)
$$y = \frac{3}{10}x + 5.5$$


h)
$$y = x + 3.5$$

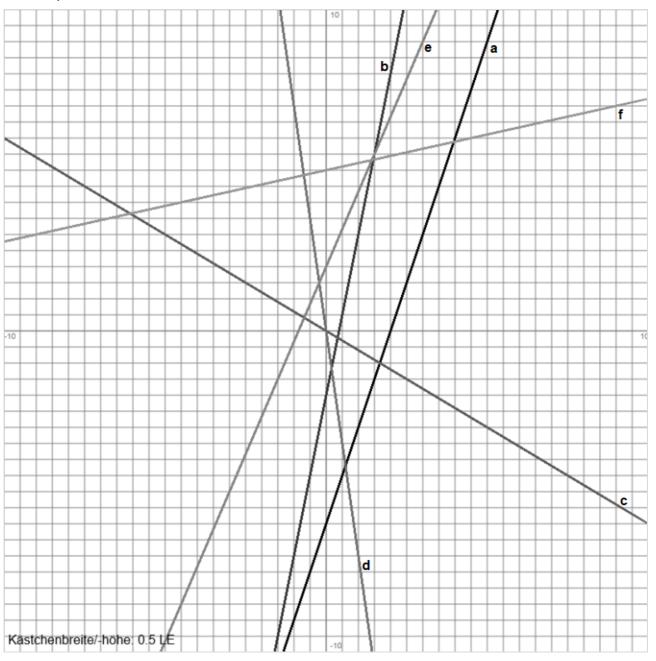
Vorgehensweise: Zum Graphen der jeweiligen Geraden y = mx+c ist der y-Achsenabschnittspunkt $S_y(0|c)$ in das x-y-Koordinatensystem einzutragen und die Steigung mit Hilfe eines (am y-Achsenabschnittspunkt einzuzeichnenden) Steigungsdreiecks zu bestimmen, so dass m = p/q gilt (p nach rechts, q nach oben bzw. unten entlang des Steigungsdreiecks).

Lösungen:


Aufgabe 7: Bestimme die Funktionsgleichungen der Geraden y = mx+c anhand der untenstehenden Graphen.

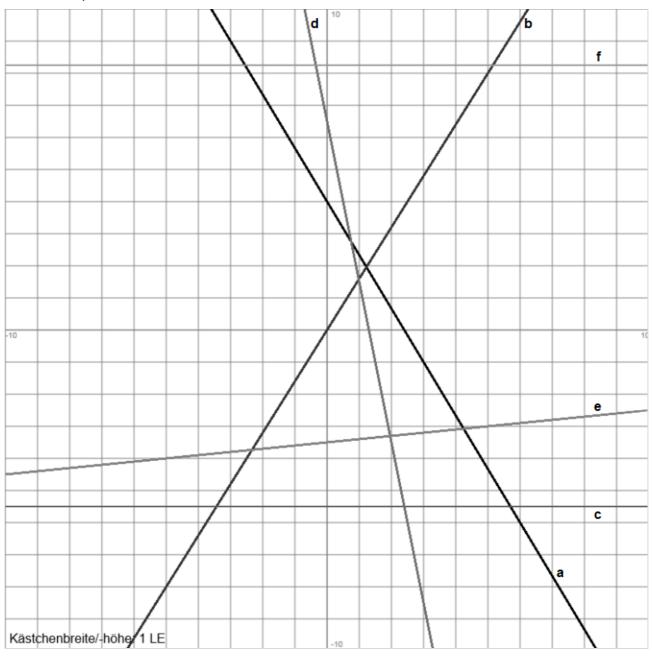
Vorgehensweise: Zum Graphen der jeweiligen Geraden y = mx+c ist zu bestimmen der y-Achensabschnitt c und die Steigung m mit Hilfe des Steigungsdreiecks, so dass m = p/q gilt (p nach rechts, q nach oben bzw. unten entlang des Steigungsdreiecks).

Lösungen: a) y = x/4+1; b) y = 5x/3+3; c) y = -x/5; d) y = -2x-1; e) y = x/6+6,5; f) y = 5x/8-7,5.


Aufgabe 8: Bestimme die Funktionsgleichungen der Geraden y = mx+c anhand der untenstehenden Graphen.

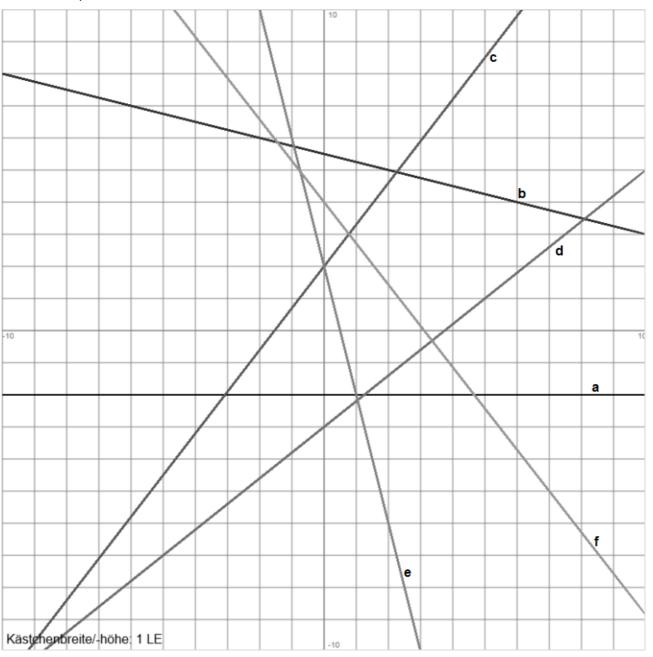
Vorgehensweise: Zum Graphen der jeweiligen Geraden y = mx+c ist zu bestimmen der y-Achsenabschnitt b und die Steigung m mit Hilfe des Steigungsdreiecks, so dass m = p/q gilt (p nach rechts, q nach oben bzw. unten entlang des Steigungsdreiecks).

Lösungen: a) y = 3x+0.5; b) y = -2x+9; c) y = 4; d) y = -0.8x-6; e) y = x/8-5.5; f) y = 8x/7-2.


Aufgabe 9: Bestimme die Funktionsgleichungen der Geraden y = mx+c anhand der untenstehenden Graphen.

Vorgehensweise: Zum Graphen der jeweiligen Geraden y = mx+c ist zu bestimmen der y-Achsenabschnitt b und die Steigung m mit Hilfe des Steigungsdreiecks, so dass m = p/q gilt (p nach rechts, q nach oben bzw. unten entlang des Steigungsdreiecks).

Lösungen: a) y = 3x-6; b) y = 5x-2; c) y = -3x/5; d) y = -7x; e) y = 7x/3+2; f) y = 2x/9+5.


Aufgabe 10: Bestimme die Funktionsgleichungen der Geraden y = mx+c anhand der untenstehenden Graphen.

Vorgehensweise: Zum Graphen der jeweiligen Geraden y = mx+c ist zu bestimmen der y-Achsenabschnitt c und die Steigung m mit Hilfe des Steigungsdreiecks, so dass m = p/q gilt (p nach rechts, q nach oben bzw. unten entlang des Steigungsdreiecks).

Lösungen: a) y = -5x/3+4; b) y = 1,6x; c) y = -5,5; d) y = -5x+6,5; e) y = 0,1x-3,5; f) y = 8,25.

Aufgabe 11: Bestimme die Funktionsgleichungen der Geraden y = mx+c anhand der untenstehenden Graphen.

Vorgehensweise: Zum Graphen der jeweiligen Geraden y = mx+c ist zu bestimmen der y-Achsenabschnitt c und die Steigung m mit Hilfe des Steigungsdreiecks, so dass m = p/q gilt (p nach rechts, q nach oben bzw. unten entlang des Steigungsdreiecks).

Lösungen: a) y = -2; b) y = -0.25x+5.5; c) y = 1.3x+2; d) y = 0.8x-3; e) y = -4x+2; f) y = -9x/7+4.

Aufgabe 12: Zeichne die Graphen der Geraden y = mx+c ein mit Hilfe einer x-y-Wertetabelle (x-Werte: -4, -3, -2, -1, 0, 1, 2, 3, 4).

a)
$$y = \frac{11}{4}$$

b)
$$y = -1.5x - 2$$

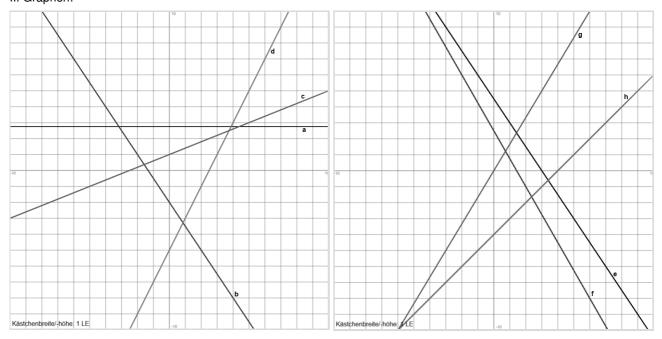
c)
$$y = \frac{2}{5}x + 1$$

d)
$$y = 2x - 5$$

e)
$$y = -\frac{3}{2}x + 4.5$$

f)
$$y = -\frac{7}{4}x + 2.5$$

g)
$$y = \frac{5}{3}x$$


h)
$$y = x - 4$$

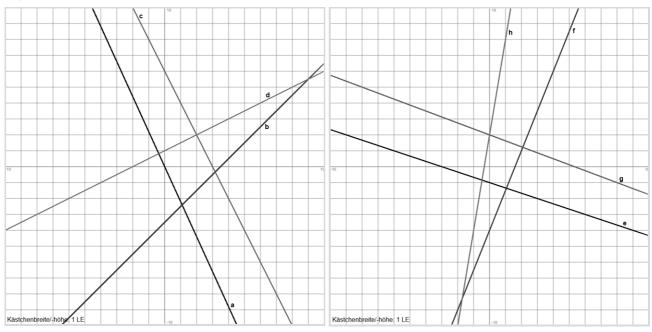
Vorgehensweise: Zum Graphen der jeweiligen Geraden y = mx+c ist zu bestimmen der y-Achsenabschnitt b und die Steigung m mit Hilfe des Steigungsdreiecks, so dass m = p/q gilt (p nach rechts, q nach oben bzw. unten entlang des Steigungsdreiecks).

Lösungen: I. Wertetabellen:

a)	X	-4 2,75	-3 2,75	-2 2,75	-1 2,75	0 2,75	1 2,75	2 2,75	3 2,75	2,75
	У	2,73	2,75	2,73	2,73	2,73	2,75	2,73	2,73	2,75
b)	Х	-4	-3	-2	-1	0	1	2	3	4
	у	4	2,5	1	-0,5	-2	-3,5	-5	-6,5	-8
c)	X	-4	-3	-2	-1	0	1	2	3	4
	у	-0,6	-0,2	0,2	0,6	1	1,4	1,8	2,2	2,6
		41	-	0	- 1	0	1	0	-	4
d)	Х	-4	-3	-2	-1	0	1	2	3	4
	у	-13	-11	-9	-7	-5	-3	-1	1	3
۵)		-4	-3	-2	-1	0	41	2	3	4
e)	Х						1			
	У	10,5	9	7,5	6	4,5	3	1,5	0	-1,5
f)	х	-4	-3	-2	-1	0	1	2	3	4
,	У	9,5	7,75	6	4,25	2,5	0,75	-1	-2,75	-4,5
			-1	_1	.1		. 1	_1	_1	.1
g)	X	-4	-3	-2	-1	0	1	2	3	4
	у	-20/3	-5	-10/3	-5/3	0	5/3	10/3	5	20/3
h)	V	-4	-3	-2	-1	0	- 1	2	3	4
h)	Х						1			
	У	-8	-7	-6	-5	-4	-3	-2	-1	0

II. Graphen:

Aufgabe 13: Bestimme die Funktionsgleichung der Geraden y = mx+c, wenn für diese die nachstehenden Wertetabellen gelten.


a)										
	Х	-4	-3	-2	-1	0	1	2	-6,6	4
	у	8,8	6,6	4,4	2,2	0	-2,2	-4,4	-6,6	-8,8
b)										
	Х	-4	-3 -6,5	-2 -5,5	-1	0	1	2 -1,5	3 -0,5	4 0,5
	у	-7,5	-6,5	-5,5	-4,5	-3,5	-2,5	-1,5	-0,5	0,5
c)										
	Х	-4	-3	-2	-1	0	1	2	3	-2
	у	14	12	10	8	6	4	2	0	-2
d)										
	Х	-4 -1	-3	-2 0	-1	0	1	2	3 2,5	4
	у	-1	-0,5	0	0,5	1	1,5	2	2,5	3
e)										
	Х	-4	-3 0	-2 -1/3	-1	0	1	2	3 -2	4
	у	1/3	0	-1/3	-2/3	-1	-4/3	-5/3	-2	-7/3
f)										
	Х	-4	-3 -11,5	-2 -9	-1	0	1	2	3 3,5	4 6
	у	-14	-11,5	-9	-6,5	-4	-1,5	1	3,5	6
g)										
	Х	-4	-3	-2	-1	0 2	1	2	3 7/8	4 1/2
	У	7/2	25/8	11/4	19/8	2	13/8	5/4	7/8	1/2
h)										
	Х	-4	-3	-2	-1	0	1	2	3 20	4
	у	-22	-16	-10	-4	2	8	14	20	26

 $\label{eq:Vorgehensweise: I. Zwei Geradenpunkte P(x_1|y_1), Q(x_2|y_2) werden aus der Wertetabelle ausgewählt. II. Ermittlung der Geradengleichung: Die Steigung m errechnet sich aus den vorgegebenen Geradenpunkten P(x_1|y_1), Q(x_2|y_2) gemäß der Vorgegebenen Geradenpunkten P(x_1|x_1), Q(x_2|x_2) gemäß der Vorgegebenen Geradenpunkten P(x_1|x_2), Q(x_2|x_2) gemäß der Vorgegebenen Geradenpunkten P(x_1|x_2), Q(x_2|x_2) gemäß der Vorgegebenen Geradenpunkten$

Formel: $m = \frac{y_2 - y_1}{x_2 - x_1}$. Das Einsetzen der Steigung m bzw. der x- und y-Koordinaten des vorgegebenen Punktes

 $P(x_1|y_1) \ bzw. \ Q(x_2|y_2) \ (Punktprobe) \ in \ den \ Geradenterm \ y = mx + c \ f \ddot{u}hrt \ auf: \ c = y_1 - mx_1 = y_2 - mx_2.$

Lösungen: a) y = -2.2x; b) y = x-3.5; c) y = -2x+6; d) y = 0.5x+1; e) y = -x/3-1, f) y = 2.5x-4.1; g) y = -3x/8+2; h) y = 6x+2.

www.michael-buhlmann.de / 11.2025 / Mathematik-Aufgabenpool: Geraden IIa (Graphen) / Aufgaben 2513-2525