Michael Buhlmann

Mathematik-Aufgabenpool > Lineare Gleichungssysteme III

Einleitung: Gleichungen bestehen aus zwei durch ein Gleichheitszeichen verbundene Terme (linke, rechte Seite der Gleichung; Term 1 = Term 2), von denen mindestens einer eine Variable (Unbekannte) x enthält. Gleichungen können (gegebenenfalls) mit Gleichungsumformungen (mit Termumformungen) nach der Variable umgeformt bzw. aufgelöst werden. Lineare Gleichungen sind innerhalb der mathematischen Algebra Gleichungen mit der Variablen x, die letztlich der Form: ax + b = 0 mit rationalen oder reellen Zahlen a, b genügen. Die Lösung der linearen Gleichung ist für $a \neq 0$

dann:
$$x = -\frac{b}{a}$$
; ist $a = 0$, so besitzt die Gleichung keine Lösung (L = {}; b≠0) oder unendlich viele Lösungen (L = **R**; b=0)

(L als Lösungsmenge). Bei den Gleichungsumformungen gelten die algebraischen Gesetzmäßigkeiten (Punkt- vor Strichrechnung, Auflösen von Klammern in Termen, Vorzeichenregeln, Rechnen mit negativen und positiven Zahlen, Rechnen mit Brüchen und Dezimalzahlen, Addition bzw. Subtraktion, Multiplikation bzw. Division in Gleichungen u.a.).

Ein <u>lineares Gleichungssystem</u> z.B. aus drei Gleichungen mit drei Unbekannten lässt sich mit dem Gauß-Algorithmus lösen für ein lineares Gleichungssystem allgemein mit n Gleichungen und n Unbekannten der Form:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$
 (1)
 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$ (2)
 $a_{n1}x + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$ (n)

mit den reellen Variablen $x_1, \dots x_n$, den reellen Koeffizienten $a_{11}, \dots a_{nn}$ und reellen Ergebnissen (rechten Seiten) $b_1, \dots b_n$. In abgekürzter <u>tabellarischer Darstellung</u> (Matrixdarstellung) lautet das lineare Gleichungssystem in der Form der durch die rechte Seite erweiterten Koeffizientenmatrix:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} | b_1 \\ a_{21} & a_{22} & \dots & a_{2n} | b_2 \\ \dots & & & \dots \\ a_{nn} & a_{n2} & \dots & a_{nn} | b_n \end{pmatrix}$$

Allgemein gilt nun für das Lösen von linearen Gleichungssystemen die folgende <u>Vorgehensweise</u> gemäß dem sog. <u>Gaußschen Algorithmus</u>:

Zur Lösung komplexer linearer Gleichungssysteme verwendet man den Gauß-Algorithmus, d.h. folgende Vorgehensweise: 1) Das lineare Gleichungssystem aus Gleichungen und Unbekannten wird in Matrixdarstellung umgeschrieben; eine Gleichung entspricht eine Zeile, einer Unbekannten einer Spalte in der Matrix, die rechte (Zahlen-) Seite des Gleichungssystems bildet die letzte Spalte der Matrix; die Anzahl der Gleichungen und Unbekannten kann auch verschieden sein. 2) Beim Gauß-Algorithmus werden, beginnend vom Anfangstableau, Nullen unter der Hauptdiagonalen wie folgt erzeugt: 1. Schritt: Erzeugen von Nullen in der 1. Spalte, beginnend mit der Gleichung in Zeile 2; ist a das erste Element in Zeile 1 und b das erste Element in Zeile 2, so werden alle Matrixelemente in Zeile 2 mit a multipliziert, alle Matrixelemente in Zeile 1 mit b multipliziert und Produkt minus Produkt als neue Matrixelemente der Zeile 2 gebildet (Vorgehensweise (*), auch unter Beachtung des kleinsten gemeinsamen Vielfachen der Zahlen a und b). Ist a das erste Element in Zeile 1 und b das erste Element in Zeile 3, so gilt die analoge Vorgehensweise (*) usw., bis die letzte Matrixzeile erreicht ist. / 2. Schritt: Erzeugen von Nullen in der 2. Spalte, beginnend mit der Gleichung in Zeile 3; ist a das zweite Element in Zeile 2 und b das zweite Element in Zeile 3, so gilt die analoge Vorgehensweise (*), und dies weiter für Zeile 4 usw., bis die letzte Matrixzeile erreicht ist. / 3. Schritt usw., bis die letzte Matrixspalte erreicht ist. Es entsteht dadurch das Endtableau des Algorithmus in Stufen- oder Dreiecksform, das auf die Lösungen des linearen Gleichungssystems hinweist gemäß: 3) Ist im Endtableau des Gauß-Algorithmus die Dreiecksgestalt (Stufenform) gegeben, so gilt für die Variable xn der letzten Spalte mit dem dazugehörenden Matrixelement a $\neq 0$ und dem Element b der rechten Seite: $ax_n = b \Leftrightarrow x_n = b/a$. / Für die Variable x₀₋₁ der vorletzten Spalte mit dem dazugehörenden Matrixelement c≠0, dem Matrixelement d und dem Element e der rechten Seite gilt: $cx_{n-1}+dx_n=e \Leftrightarrow cx_{n-1}=e-db/a \Leftrightarrow x_{n-1}=e/c-db/(ac)$ / usw., bis die Variable der ersten Matrixspalte errechnet ist. 4) Die Lösungsmenge besteht - wegen der Eindeutigkeit der Lösung - aus einem Zahlentupel, also: $L = \{(I|m|...|t)\}$ mit reellen Zahlen I, m, ... t.

Aufgabe 1: Die folgenden linearen Gleichungssysteme aus drei Gleichungen und drei Unbekannten haben eine eindeutige Lösung. Bestimme die Lösungen (x_1, x_2, x_3) :

Nr.	Lineares Gleichungssystem	Lösungen
1	$-1x_1 + 1x_2 + 4x_3 = 14$	
	$+ 2x_1 + 2x_2 - 4x_3 = 20$	
	$-1x_1 + 4x_2 - 2x_3 = 23$	$x_1 = 7, x_2 = 9, x_3 = 3$
2	$+ 2x_1 - 1x_2 - 2x_3 = -17$	
	$+ 5x_1 + 2x_2 - 2x_3 = -20$	
	$+ 5x_1 - 1x_2 + 1x_3 = 10$	$x_1 = 0, x_2 = -1, x_3 = 9$
3	$-3x_1 + 3x_2 - 4x_3 = 3$	
	$+ 3x_1 + 2x_2 - 2x_3 = -27$	
	$-5x_1 + 4x_2 + 3x_3 = 86$	$x_1 = -7, x_2 = 6, x_3 = 9$
4	$-5x_1 + 4x_2 + 4x_3 = -45$	
	$-2x_1 + 5x_2 - 2x_3 = -35$	
	$-1x_1 + 5x_2 - 1x_3 = -30$	$x_1 = 5, x_2 = -5, x_3 = 0$
5	$-4x_1$ $-3x_3 = 24$	
	$-3x_1 - 2x_2 - 5x_3 = 1$	
	$+ 1x_1 - 5x_2 + 2x_3 = -16$	$x_1 = -9, x_2 = 3, x_3 = 4$
6	$-3x_1 + 2x_2 + 1x_3 = -12$	
	$+ 2x_1 - 1x_2 + 1x_3 = -5$	
	$+ 5x_2 + 1x_3 = -3$	$x_1 = 2, x_2 = 1, x_3 = -8$
7	$-4x_1 + 1x_2 + 2x_3 = -32$	
	$+ 2x_1 + 3x_2 + 3x_3 = -25$	
	$+ 4x_1 + 3x_2 - 4x_3 = 18$	$x_1 = 4, x_2 = -6, x_3 = -5$
8	$-4x_1 + 4x_2 + 3x_3 = 5$	
	$-1x_1 - 3x_2 - 4x_3 = -15$	
	$-1x_1 - 3x_2 - 4x_3 = -15$ $+ 3x_2 + 5x_3 = 5$	$x_1 = 5, x_2 = 10, x_3 = -5$
9	$+ 3x_1 + 1x_2 - 3x_3 = -17$	
	$-4x_1 + 3x_2 + 1x_3 = 8$ $-1x_1 + 3x_2 = -3$	
	$-1x_1 + 3x_2 = -3$	$x_1 = -3, x_2 = -2, x_3 = 2$
10	$+ 2x_1 - 2x_3 = 2$	
	$+ 2x_1 + 4x_2 - 2x_3 = -10$	
	$+ 2x_1 - 2x_3 = 2$ $+ 2x_1 + 4x_2 - 2x_3 = -10$ $+ 2x_1 - 2x_2 + 3x_3 = -7$	$x_1 = -2, x_2 = -3, x_3 = -3$
		-

Aufgabe 2: Die folgenden linearen Gleichungssysteme aus drei Gleichungen und drei Unbekannten haben eine eindeutige Lösung. Bestimme die Lösungen (x_1, x_2, x_3) :

Nr.	Lineares Gleichungssystem	Lösungen
1	$-8x_1 - 2x_2 - 2x_3 = 26$	
	$+ 4x_1 - 3x_2 + 5x_3 = -49$	
	$-9x_1 - 3x_2 - 5x_3 = 5$	$x_1 = -8, x_2 = 14, x_3 = 5$

2	$+ 2x_1 + 5x_3 = 98$	
	$-1x_1 + 9x_2 - 2x_3 = 66$	
	$+ 7x_1 - 2x_2 + 6x_3 = 158$	$x_1 = 14, x_2 = 12, x_3 = 14$
3	$+ 1x_1 + 3x_2 - 2x_3 = -27$	
	$+ 4x_1 + 2x_2 + 9x_3 = 115$	
	$+ 2x_1 - 1x_2 - 8x_3 = -41$	$x_1 = 12, x_2 = -7, x_3 = 9$
4	$-9x_1 + 4x_2 + 2x_3 = -84$	
	$-5x_1 - 5x_2 + 5x_3 = -50$	
	$-10x_1 + 7x_2 - 1x_3 = -118$	$x_1 = 16, x_2 = 8, x_3 = 14$
5	$-6x_1 - 6x_2 - 2x_3 = -106$	
	$-8x_1 + 3x_2 - 9x_3 = -211$	
	$-4x_1 + 1x_2 + 1x_3 = -45$	$x_1 = 14, x_2 = 0, x_3 = 11$
6	$+ 8x_1 - 8x_2 - 7x_3 = 157$	
	$+ 2x_1 - 3x_2 + 2x_3 = 32$	
	$-9x_1 + 4x_2 - 9x_3 = -106$	$x_1 = 13, x_2 = -4, x_3 = -3$
7	$+ 5x_1 - 3x_2 - 6x_3 = -64$	
	$+ 2x_1 - 9x_2 + 7x_3 = -61$	
	$-5x_1 - 3x_2 - 7x_3 = -206$	$x_1 = 13, x_2 = 19, x_3 = 12$
8	$-6x_1 + 8x_2 = -26$	
	$+ 8x_1 - 1x_2 - 4x_3 = 128$	
	$-2x_1 - 7x_2 - 2x_3 = -78$	$x_1 = 15, x_2 = 8, x_3 = -4$
9	$+ 2x_1 - 2x_2 - 7x_3 = -30$	
	$-5x_1 - 2x_2 - 1x_3 = -37$	
	$-4x_1 - 4x_2 + 7x_3 = -68$	$x_1 = 1, x_2 = 16, x_3 = 0$
10	$+ 5x_1 - 2x_2 - 3x_3 = 69$	
	$-6x_1 - 8x_2 + 3x_3 = -59$	
	$+ 5x_1 - 6x_2 - 7x_3 = 97$	$x_1 = 10, x_2 = -2, x_3 = -5$

Aufgabe 3: Die folgenden linearen Gleichungssysteme aus drei Gleichungen und drei Unbekannten haben eine eindeutige Lösung. Bestimme die Lösungen (x, y, z):

Nr.	Lineares Gleichungssystem	Lösungen
1	+ 5x - 3z = -59	
	+ 5x $- 3z = -59+ 3x$ $- 1z = -29$	
	+ 7x + 2y + 5z = 13	x = -7, y = 11, z = 8
2	+ 4x + 4y - 1z = -48	
	-6x + 6y + 7z = 56	
	+ 6x - 7y - 1z = -3	x = -5, y = -5, z = 8

3	-1x - 2y - 1z = -29	
	+ 4y + 4z = 36	
	+ 4x - 2y - 4z = 20	x = 8, y = 12, z = -3
4	+ 6x + 5y + 8z = 30	
	-3x - 2y - 2z = 0	
	-3x + 7y + 3z = 115	x = -10, y = 10, z = 5
5	+ 7x + 7y + 3z = 26	
	-3x - 4y + 1z = 3	
	-2x - 6y + 5z = 13	x = -12, y = 11, z = 11
6	+ 6y - 5z = -111	
	-8x - 4y - 2z = -6	
	+ 7x + 6y + 5z = 39	x = 0, y = -6, z = 15
7	-2x - 6y + 4z = -110	
	+ 4x - 7y + 2z = -53	
	+ 1x + 7z = -92	x = 6, y = 7, z = -14
8	-3x - 1y + 3z = 12	
	+ 6x + 1y - 5z = -30	
	+ 6x + 3y - 5z = -6	x = -2, y = 12, z = 6
9	-1x + 7y - 4z = 1	
	+ 5x - 5y - 3z = -101	
	-5x - 2y = 23	x = -7, y = 6, z = 12
10	+ 8x + 7y = 105	
	+ 6x - 2y - 4z = 64	
	-5x - 4y - 1z = -54	x = 7, y = 7, z = -9

Aufgabe 4: Die folgenden linearen Gleichungssysteme aus drei Gleichungen und drei Unbekannten haben eine eindeutige Lösung. Bestimme die Lösungen (r, s, t):

Nr.	Lineares Gleichungssystem	Lösungen
1	+ 1r + 7s + 1t = -15	
	- 10r - 8s - 12t = -44	
	-12r + 5s - 7t = -67	r = 2, $s = -3$, $t = 4$
2	-13r + 10s - 8t = -9	
	+ 2r - 1s + 4t = 24	
	- 5r + 1s + 11t = 78	r = 1, s = 6, t = 7
3	-8r + 4s + 3t = -44	
	+ 9r - 11s + 7t = -5	
	- 7r - 1s - 9t = -1	r = 5, s = 2, t = -4

4	-3r - 14s + 9t = -86	
	+ 10r + 10s - 2t = 30	
	- 6r + 10s + 13t = 94	r = -4, $s = 7$, $t = 0$
5	+ 13r + 2s + 13t = 124	
	+ 13r + 4s - 1t = 48	
	-5r + 7s - 12t = -106	r = 5, $s = -3$, $t = 5$
6	+ 9r + 9s - 15t = -93	
	+ 6r + 9s - 4t = -47	
	-4r - 5s + 14t = 83	r = 3, s = -5, t = 5
7	-14r + 10s - 6t = 160	
	+ 8r - 3s - 12t = -57	
	+ 13r - 12s + 13t = -175	r = -6, $s = 7$, $t = -1$
8	+ 1r - 3s - 6t = -31	
	- 1r + 12s + 4t = -19	
	-13r + 4s - 2t = -17	r = -1, s = -4, t = 7
9	- 12r - 6s - 7t = -6	
	+ 11r + 11s - 1t = 28	
	- 15r - 11s - 2t = -34	r = 6, s = -4, t = -6
10	+ 10r - 15s - 5t = -45	
	- 1r - 9s - 2t = -33	
	+ 8r + 12s + 14t = -24	<i>r</i> = 0, <i>s</i> = 5, <i>t</i> = -6

Aufgabe 5: Die folgenden linearen Gleichungssysteme aus drei Gleichungen und drei Unbekannten haben eine eindeutige Lösung. Bestimme die Lösungen (a, b, c):

Nr.	Lineares Gleichungssystem	Lösungen
1	+ 2b + 5c = 88	
	+ 1a + 4b - 4c = -70	
	+ 6a + 7b + 3c = 83	a = 6, b = -1, c = 18
2	-4a + 3b + 9c = 96	
	+ 6a + 1b + 3c = 32	
	-1a + 4b - 4c = -16	a = 0, b = 5, c = 9
3	+ 6a + 4b + 7c = 110	
	+ 9a + 6b + 4c = 152	
	+ 8a - 4b - 5c = -22	a = 6, b = 15, c = 2
4	+ 5a - 2b + 4c = 96	
	-3a + 3b = -60	
	+ 7a + 9b = 12	<i>a</i> = 12, <i>b</i> = -8, <i>c</i> = 5

		1
5	-3a + 8b - 3c = -23	
	+ 3b - 2c = -4	
	-1a + 9b - 2c = 0	a = 8, b = 2, c = 5
6	+ 5a + 3b + 2c = 38	
	+ 5a + 6b + 10c = 56	
	+ 7a + 5b + 1c = 58	a = 4, b = 6, c = 0
7	- 5a + 6b - 5c = 95	
	+ 3a + 4c = -48	
	+ 8a + 4c = -68	a = -4, $b = 5$, $c = -9$
8	+ 4a + 9b - 5c = -27	
	+ 8b - 2c = -38	
	+ 5a + 4b + 5c = 180	a = 17, b = 0, c = 19
9	+ 1a + 3b - 2c = -12	
	+ 4a + 4b + 3c = 16	
	+ 7a - 1b + 6c = 92	a = 12, b = -8, c = 0
10	+ 9a + 3b - 2c = -33	
	+ 3a + 4b + 4c = 92	
	-3a + 3b - 2c = 15	a = -4, b = 11, c = 15

Aufgabe 6: Die folgenden linearen Gleichungssysteme aus drei Gleichungen und drei Unbekannten haben eine eindeutige Lösung. Bestimme die Lösungen (α, β, γ) :

Nr.	Lineares Gleichungssystem	Lösungen
1	$-4\alpha + 2\beta - 5\gamma = -18$	
	$-2\alpha + 4\beta - 3\gamma = -26$	
	$-3\alpha + 4\beta - 4\gamma = -27$	$\alpha = -3, \beta = -5, \gamma = 4$
2	$-4\alpha + 3\beta + 1\gamma = -50$	
	$-4\alpha -3\beta +4\gamma =1$	
	$-2\alpha - 3\beta - 2\gamma = -1$	$\alpha = 8, \beta = -7, \gamma = 3$
3	$+ 2\alpha + 1\beta + 1\gamma = -17$	
	$-2\alpha - 4\beta + 2\gamma = 32$	
	$-3\alpha + 1\beta = 1$	$\alpha = -3, \beta = -8, \gamma = -3$
4	$+ 1\alpha - 1\beta + 2\gamma = -9$	
	$- 1\alpha + 4\beta + 2\gamma = -32$	
	$+ 3\alpha - 5\beta + 4\gamma = -5$	$\alpha = 4, \beta = -3, \gamma = -8$
5	$+ 5\alpha + 1\beta - 4\gamma = 73$	
	$-4\alpha - 2\beta = -46$	
	$-2\alpha + 3\beta + 2\gamma = -21$	$\alpha = 10, \beta = 3, \gamma = -5$

6	$- 1\alpha + 1\beta + 1\gamma = -6$	
	$+ 2\alpha + 4\beta - 5\gamma = -45$	
	$-4\alpha + 2\beta = 0$	$\alpha = -5, \beta = -10, \gamma = -1$
7	$+ 5\alpha - 2\beta + 3\gamma = 40$	
	$+ 1\alpha - 4\beta + 2\gamma = 17$	
	- 3α - 1γ = -18	$\alpha = 3, \beta = 1, \gamma = 9$
8	$+ 2\alpha + 3\beta + 4\gamma = 14$	
	$- 1\alpha - 3\beta + 4\gamma = 14$	
	$+ 2\alpha - 3\beta - 4\gamma = -30$	$\alpha = -4, \beta = 2, \gamma = 4$
9	$-2\alpha + 2\beta - 4\gamma = 24$	
	$+ 3\alpha$ $- 3\gamma = 36$	
	$-3\alpha + 5\gamma = -50$	$\alpha = 5, \beta = 3, \gamma = -7$
10	$+ 2\alpha + 1\beta - 5\gamma = 6$	
	$+ 3\alpha + 5\beta - 4\gamma = -12$	
	$+ 4\alpha + 1\beta - 1\gamma = -2$	$\alpha = 0, \beta = -4, \gamma = -2$

Aufgabe 7: Die folgenden linearen Gleichungssysteme aus drei Gleichungen und drei Unbekannten haben eine eindeutige Lösung. Bestimme die Lösungen (i, j, k):

Nr.	Lineares Gleichungssystem	Lösungen
1	-1i - 2j - 1k = -2	
	+ 1i - 1j + 7k = 38	
	- 1 <i>i</i> + 11 <i>j</i> + 9 <i>k</i> = -14	i = 6, j = -4, k = 4
2	+ 1 <i>i</i> + 2 <i>k</i> = -5	
	+ 15i + 1j + 2k = 71	
	+ 14i + 14j + 4k = 134	<i>i</i> = 5, <i>j</i> = 6, <i>k</i> = -5
3	+ 8i + 2j - 5k = 19	
	+ 11i - 3j - 3k = 45	
	+ 8i + 11j - 3k = -67	i = 0, j = -8, k = -7
4	-4i + 2j - 4k = -6	
	-4i + 10j + 3k = -6	
	+ 6 <i>i</i> + 11 <i>j</i> - 1 <i>k</i> = 163	i = 13, j = 7, k = -8
5	+ 10i + 4j + 11k = 40	
	-4i - 3j + 8k = 20	
	+ 11j + 3k = -82	i = 5, j = -8, k = 2
6	+ 6i + 9j + 7k = 118	
	-2i + 1j + 12k = -98	
	+ 10i + 14j + 7k = 220	<i>i</i> = 8, <i>j</i> = 14, <i>k</i> = -8

Aufgabe 8: Die folgenden linearen Gleichungssysteme aus drei Gleichungen und drei Unbekannten haben eine eindeutige Lösung. Bestimme die Lösungen (A, B, C):

Nr.	Lineares Gleichungssystem	Lösungen
1	-11A - 1B + 5C = 127	
	- 1A - 3B - 2C = -11	
	+ 9A + 2B - 2C = -86	A = -8, B = 1, C = 8
2	- 1A + 2C = 44	
	- 11 <i>A</i> - 13 <i>B</i> - 6 <i>C</i> = -98	
	+ 7A - 1B - 10C = -242	A = -8, B = 6, C = 18
3	- 14A - 9B - 14C = 229	
	+ 8A - 1B + 3C = -102	
	+ 6A - 9B - 1C = -62	A = -10, B = 1, C = -7
4	-1A - 4B + 3C = 10	
	-10A - 5B - 4C = -1	
	+ 3A - 15B - 11C = -65	A = -2, B = 1, C = 4
5	-4A - 7B + 2C = 60	
	+ 9A - 4B - 7C = -222	
	+ 5A - 10B + 5C = 30	A = -9, B = 2, C = 19
6	- 6A - 11B - 11C = -138	
	+ 3A - 9B - 12C = -228	
	-1A - 4B + 7C = 70	A = -10, B = 6, C = 12
7	-4A - 2B + 1C = -44	
	-3A - 15B - 13C = -348	
	-8A - 1B + 2C = -73	A = 13, B = 5, C = 18

8	-4A + 1B + 3C = 84	
	+ 6A - 13B - 3C = -260	
	+ 5A + 6B - 11C = -134	A = -4, B = 14, C = 18
9	+ 7A - 3B - 2C = 81	
	-5A - 3B + 4C = 27	
	+ 4A - 9B - 10C = -71	A = 14, B = -7, C = 19
10	- 13A - 6B - 6C = -52	
	-11A - 4B + 2C = -100	
	-9A + 8B + 7C = -187	A = 10, B = -6, C = -7

 $www.michael-buhlmann.de \ /\ 01.2020\ /\ Mathematik-Aufgabenpool:\ Lineare\ Gleichungssysteme\ III\ /\ Aufgaben\ 943-950$